Regulation of death-associated protein kinase - Stabilization by HSP90 heterocomplexes

Indiana University Bloomington, Bloomington, Indiana, United States
Journal of Biological Chemistry (Impact Factor: 4.6). 05/2007; 282(16):11795-804. DOI: 10.1074/jbc.M610430200
Source: PubMed

ABSTRACT Death-associated protein kinase (DAPK) has been found associated with HSP90, and inhibition of HSP90 with 17-alkylamino-17-demethoxygeldanamycin reduced expression of DAPK. These results were extended to determine whether the degradation of DAPK in the absence of HSP90 activity is dependent on the ubiquitin-proteasome pathway. Our results show that treatment of cells with geldanamycin (GA) leads to degradation of DAPK, and this degradation is attenuated by the proteasome inhibitor, lactacystin. GA-induced DAPK degradation is also dependent on phosphorylation of DAPK at Ser(308), and the cellular levels of phospho(Ser(308))-DAPK dramatically increase in response to GA treatment. Expression of two distinct ubiquitin E3 ligases, carboxyl terminus of HSC70-interacting protein (CHIP) or DIP1/Mib1, enhanced DAPK degradation, and conversely, short interfering RNA depletion of either CHIP or DIP1/Mib1 attenuated DAPK degradation. In vitro ubiquitination assays confirmed that DAPK is targeted for ubiquitination by both CHIP and DIP. Consistent with these results, DAPK is found in two distinct immune complexes, one containing HSP90 and CHIP and a second complex containing only DIP1/Mib. Collectively, these results indicate that strict modulation of DAPK activities is critical for regulation of apoptosis and cellular homeostasis.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Death associated protein kinase (DAPK) is a large, multi-domain ser/thr kinase whose activities converge upon multiple signaling pathways that regulate autophagy, caspase-dependent cell death, cell adhesion and migration. The cellular levels of DAPK are post-translationally regulated by the combined activities of two degradation systems, including the ubiquitin proteasome and an extra-lysosomal proteolysis pathway. At least three distinct E3 ubiquitin ligases target DAPK, including mindbomb1, the chaperone dependent ligase, CHIP (carboxy terminus of Hsp70-interacting protein) and a cullin RING ligase complex, KLHL20-Cul3-RBX1. In addition, it appears that the cellular levels of DAPK are also regulated by an extra-lysosomal protease, cathepsin B. While protein quality control and recycling clearly benefit cells by removal of misfolded or toxic proteins and recycling of their components, the finding that multiple surveillance systems target DAPK suggests that these protein degradation systems also act to fine tune DAPK expression levels in response to specific signaling pathways.
    Apoptosis 11/2013; 19(2). DOI:10.1007/s10495-013-0936-1 · 3.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: DAP-kinase (DAPK) is a Ca(2+)/calmodulin regulated Ser/Thr kinase that activates a diverse range of cellular activities. It is subject to multiple layers of regulation involving both intramolecular signaling, and interactions with additional proteins, including other kinases and phosphatases. Its protein stability is modulated by at least three distinct ubiquitin-dependent systems. Like many kinases, DAPK participates in several signaling cascades, by phosphorylating additional kinases such as ZIP-kinase and protein kinase D (PKD), or Pin1, a phospho-directed peptidyl-prolyl isomerase that regulates the function of many phosphorylated proteins. Other substrate targets have more direct cellular effects; for example, phosphorylation of the myosin II regulatory chain and tropomyosin mediate some of DAPK's cytoskeletal functions, including membrane blebbing during cell death and cell motility. DAPK induces distinct death pathways of apoptosis, autophagy and programmed necrosis. Among the substrates implicated in these processes, phosphorylation of PKD, Beclin 1, and the NMDA receptor has been reported. Interestingly, not all cellular effects are mediated by DAPK's catalytic activity. For example, by virtue of protein-protein interactions alone, DAPK activates pyruvate kinase isoform M2, the microtubule affinity regulating kinases and inflammasome protein NLRP3, to promote glycolysis, influence microtubule dynamics, and enhance interleukin-1β production, respectively. In addition, a number of other substrates and interacting proteins have been identified, the physiological significance of which has not yet been established. All of these substrates, effectors and regulators together comprise the DAPK interactome. By presenting the components of the interactome network, this review will clarify both the mechanisms by which DAPK function is regulated, and by which it mediates its various cellular effects.
    Apoptosis 11/2013; 19(2). DOI:10.1007/s10495-013-0926-3 · 3.61 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Perinatal brain damage underlies an important share of motor and neurodevelopmental disabilities, such as cerebral palsy, cognitive impairment, visual dysfunction and epilepsy. Clinical, epidemiological, and experimental studies have revealed that factors such as inflammation, excitotoxicity and oxidative stress contribute considerably to both white and grey matter injury in the immature brain. A member of the death associated protein kinase (DAPk) family, DAPk1, has been implicated in cerebral ischemic damage, whereby DAPk1 potentiates NMDA receptor-mediated excitotoxicity through interaction with the NR2BR subunit. DAPk1 also mediate a range of activities from autophagy, membrane blebbing and DNA fragmentation ultimately leading to cell death. DAPk mRNA levels are particularly highly expressed in the developing brain and thus, we hypothesize that DAPk1 may play a role in perinatal brain injury. In addition to reviewing current knowledge, we present new aspects of the molecular structure of DAPk domains, and relate these findings to interacting partners of DAPk1, DAPk-regulation in NMDA-induced cerebral injury and novel approaches to blocking the injurious effects of DAPk1.
    International Journal of Molecular Sciences 07/2013; 14(7):13858-72. DOI:10.3390/ijms140713858 · 2.34 Impact Factor


Available from