Article

Prediction of diabetic nephropathy using urine proteomic profiling 10 years prior to development of nephropathy

Harvard University, Cambridge, Massachusetts, United States
Diabetes care (Impact Factor: 8.57). 03/2007; 30(3):638-43. DOI: 10.2337/dc06-1656
Source: PubMed

ABSTRACT We examined whether proteomic technologies identify novel urine proteins associated with subsequent development of diabetic nephropathy in subjects with type 2 diabetes before evidence of microalbuminuria.
In a nested case-control study of Pima Indians with type 2 diabetes, baseline (serum creatinine <1.2 mg/dl and urine albumin excretion <30 mg/g) and 10-year urine samples were examined. Case subjects (n = 31) developed diabetic nephropathy (urinary albumin-to-creatinine ratio >300 mg/g) over 10 years. Control subjects (n = 31) were matched to case subjects (1:1) according to diabetes duration, age, sex, and BMI but remained normoalbuminuric (albumin-to-creatinine ratio <30 mg/g) over the same 10 years. Surface-enhanced laser desorption/ionization time-of-flight mass spectrometry (SELDI-TOF MS) was performed on baseline urine samples, and training (14 cases:14 controls) and validation (17:17) sets were tested.
At baseline, A1C levels differed between case and control subjects. SELDI-TOF MS detected 714 unique urine protein peaks. Of these, a 12-peak proteomic signature correctly predicted 89% of cases of diabetic nephropathy (93% sensitivity, 86% specificity) in the training set. Applying this same signature to the independent validation set yielded an accuracy rate of 74% (71% sensitivity, 76% specificity). In multivariate analyses, the 12-peak signature was independently associated with subsequent diabetic nephropathy when applied to the validation set (odds ratio [OR] 7.9 [95% CI 1.5-43.5], P = 0.017) and the entire dataset (14.5 [3.7-55.6], P = 0.001), and A1C levels were no longer significant.
Urine proteomic profiling identifies normoalbuminuric subjects with type 2 diabetes who subsequently develop diabetic nephropathy. Further studies are needed to characterize the specific proteins involved in this early prediction.

0 Followers
 · 
171 Views
  • Source
    Nephrology Dialysis Transplantation 12/2014; DOI:10.1093/ndt/gfu372 · 3.49 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Neural tube defects (NTDs) are common birth defects, whose specific biomarkers are needed. The purpose of this pilot study is to determine whether protein profiling in NTD-mothers differ from normal controls using SELDI-TOF-MS. ProteinChip Biomarker System was used to evaluate 82 maternal serum samples, 78 urine samples and 76 amniotic fluid samples. The validity of classification tree was then challenged with a blind test set including another 20 NTD-mothers and 18 controls in serum samples, and another 19 NTD-mothers and 17 controls in urine samples, and another 20 NTD-mothers and 17 controls in amniotic fluid samples. Eight proteins detected in serum samples were up-regulated and four proteins were down-regulated in the NTD group. Four proteins detected in urine samples were up-regulated and one protein was down-regulated in the NTD group. Six proteins detected in amniotic fluid samples were up-regulated and one protein was down-regulated in the NTD group. The classification tree for serum samples separated NTDs from healthy individuals, achieving a sensitivity of 91% and a specificity of 97% in the training set, and achieving a sensitivity of 90% and a specificity of 97% and a positive predictive value of 95% in the test set. The classification tree for urine samples separated NTDs from controls, achieving a sensitivity of 95% and a specificity of 94% in the training set, and achieving a sensitivity of 89% and a specificity of 82% and a positive predictive value of 85% in the test set. The classification tree for amniotic fluid samples separated NTDs from controls, achieving a sensitivity of 93% and a specificity of 89% in the training set, and achieving a sensitivity of 90% and a specificity of 88% and a positive predictive value of 90% in the test set. These suggest that SELDI-TOF-MS is an additional method for NTDs pregnancies detection.
    PLoS ONE 07/2014; 9(7):e103276. DOI:10.1371/journal.pone.0103276 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Mass spectrometry (MS) is currently the most promising tool for studying proteomics to investigate largescale proteins in a specific proteome. Emerging MS-based proteomics is widely applied to decipher complex proteome for discovering potential biomarkers. Given its growing usage in clinical medicine for biomarker discovery to predict, diagnose and confer prognosis, MS-based proteomics can benefit study of personalized medicine. In this review we introduce some fundamental MS theory and MS-based quantitative proteomic approaches as well as several representative clinical MS-based proteomics issues in Chest Medicine, Gerontology, and Nephrology.
    11/2014; 4:25. DOI:10.7603/s40681-014-0025-y