Cytokine changes during interferon-beta therapy in multiple sclerosis: correlations with interferon dose and MRI response.

University of Maryland School of Medicine, Department of Neurology, MD, USA.
Journal of Neuroimmunology (Impact Factor: 2.79). 04/2007; 185(1-2):168-74. DOI: 10.1016/j.jneuroim.2007.01.011
Source: PubMed

ABSTRACT We investigated serum (IL-10 and IL-12p70) and cellular cytokine levels (IL-10, IL-12p40, IL-12p70, IFN-gamma) in stimulated PBMC over 24 weeks in 15 relapsing-remitting multiple sclerosis (MS) patients randomized to receive once-weekly (qw) IFN-beta-1a 30 microg intramuscularly (IM) (n=8) or three-times-weekly (tiw) IFN-beta-1a 44 microg subcutaneously (SC) (n=7). Overall, IFN-beta treatment increased cellular IL-10 (p<0.01) levels and the ratios of cellular IL-10/IL-12p40 (p<0.01) and IL-10/IL-12p70 (p<0.02) while cellular IFN-gamma levels were reduced (p<0.01). Serum IL-10 levels were decreased in non-responders to therapy based on MRI-defined criteria (p<0.01) but did not change in responders over the course of treatment. In addition, non-responders demonstrated a decrease in serum IL-10/IL-12p70 ratio (p=0.031) and a decrease in cellular IL-12p70 (p<0.02). A decrease in cellular IFN-gamma was observed in responders (p=0.013). This is the first study that compares cytokine changes between the two IFN-beta regimes and demonstrates that serum IL-10 levels decrease in those patients who continue to have active MRI lesions while on interferon-beta therapy.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is characterized by episodes of inflammatory damage to myelin and oligodendrocytes in the central nervous system mediated by T, B, and Natural killer lymphocytes of various types, antibody and complement, dendritic cells, macrophages, microglia, and secreted cytokines and chemokines. These relapses cause significant neurologic dysfunction, which is only partially reversible, and eventual secondary progressive neurologic decline frequently occurs. Interferon-beta (IFNβ) has been a mainstay of MS treatment for more than 20 years after being proven to reduce relapse frequency and development of new lesions on magnetic resonance imaging. However, patient response is highly variable and the exact mechanisms of action are not fully understood. Breakthrough relapses and secondary progressive neurologic decline remain significant concerns in long-term MS treatment. Biomarkers may help elucidate the beneficial effects of IFNβ in MS and possibly guide therapeutic decision making given the variety of different therapies now available with varying mechanisms of action and risks. Various serum and cerebrospinal fluid candidate biomarkers have been described, but none have yet been proven to carry sufficient predictive reliability for routine clinical use.
    Journal of Interferon & Cytokine Research 08/2014; 34(8):600-4. · 3.90 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: To evaluate the association between the tumor necrosis factor beta (TNF-β) NcoI polymorphism and inflammatory and metabolic markers in patients with multiple sclerosis (MS) patients and the association of these markers with disease disability, a 782 base-pair fragment of the TNF-β gene was amplified from genomic DNA and digested with the NcoI restriction enzyme. The serum levels of numerous cytokines (IL-1β, IL-12, IL-6, TNF-α, IFN-γ, IL-4, IL-10, and IL-17) serum lipid levels, plasma insulin levels, and the Homeostasis Model Assessment-Insulin Resistance (HOMA-IR) levels were evaluated in 123 female and 43 male patients with MS. Females carrying the TNFB2/B2 genotype presented with decreased IL-4 and IL-10 levels and increased TNF-α, glucose, insulin, and HOMA-IR levels; moreover, there were positive correlations between EDSS and glucose and between EDSS and HOMA-IR in these females. Males carrying the TNFB2/B2 genotype exhibited increased levels of TNF-α, IFN-γ, and IL-17 (p=0.0326) and decreased levels of IL-4, IL-10, insulin, and HOMA-IR; there was a positive correlation between EDSS and TNF-α levels. The TNFB2/B2 genotype of TNF-β NcoI polymorphism was associated with increased inflammatory and metabolic markers and this association was different according to sex of MS patients.
    Journal of the neurological sciences. 08/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Multiple sclerosis (MS) is a neuroimmunological disorder characterized by central nervous system demyelination, axonal injury and loss. Considering the complexity of its aetiopathogenesis, early diagnosis of MS and individualized management are challenging in clinical practice. As the pathophysiologic and pharmacological indicators, studies on biomarkers in MS are useful for early prediction and diagnosis, monitoring of disease activity and predicting treatment response. In this review, we will summarize recent development of biomarker studies in MS from protein molecules to noncoding RNAs.
    Neurochemical Research 07/2014; · 2.55 Impact Factor


Available from