Adrenomedullin insufficiency increases allergen-induced airway hyperresponsiveness in mice

Shinshu University, Shonai, Nagano, Japan
Journal of Applied Physiology (Impact Factor: 3.43). 07/2007; 102(6):2361-8. DOI: 10.1152/japplphysiol.00615.2006
Source: PubMed

ABSTRACT Adrenomedullin (ADM), a newly identified vasodilating peptide, is reported to be expressed in lungs and have a bronchodilating effect. We hypothesized whether ADM could be involved in the pathogenesis of bronchial asthma. We examined the role of ADM in airway responsiveness using heterozygous ADM-deficient mice (AM+/-) and their littermate control (AM+/+). Here, we show that airway responsiveness is enhanced in ADM mutant mice after sensitization and challenge with ovalbumin (OVA). The immunoreactive ADM level in the lung tissue after methacholine challenge was significantly greater in the wild-type mice than that in the mutant. However, the impairment of ADM gene function did not affect immunoglobulins (OVA-specific IgE and IgG1), T helper 1 and 2 cytokines, and leukotrenes. Thus the conventional mechanism of allergen-induced airway responsiveness is not relevant to this model. Furthermore, morphometric analysis revealed that eosinophilia and airway hypersecretion were similarly found in both the OVA-treated ADM mutant mice and the OVA-treated wild-type mice. On the other hand, the area of the airway smooth muscle layer of the OVA-treated mutant mice was significantly greater than that of the OVA-treated wild-type mice. These results suggest that ADM gene disruption may be associated with airway smooth muscle hyperplasia as well as enhanced airway hyperresponsiveness. ADM mutant mice might provide novel insights to study the pathophysiological role of ADM in vivo.

  • Source
    Journal of Clinical Densitometry 04/2011; 14(2):156-156. DOI:10.1016/j.jocd.2011.02.016 · 1.60 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asthma is a chronic inflammatory disease affecting the lung, characterized by breathing difficulty during an attack following exposure to an environmental trigger. Calcitonin gene-related peptide (CGRP) is a neuropeptide that may have a pathological role in asthma. The CGRP receptor is comprised of two components, which include the G-protein coupled receptor, calcitonin receptor-like receptor (CLR), and receptor activity-modifying protein 1 (RAMP1). RAMPs, including RAMP1, mediate ligand specificity in addition to aiding in the localization of receptors to the cell surface. Since there has been some controversy regarding the effect of CGRP on asthma, we sought to determine the effect of CGRP signaling ablation in an animal model of asthma. Using gene-targeting techniques, we generated mice deficient for RAMP1 by excising exon 3. After determining that these mice are viable and overtly normal, we sensitized the animals to ovalbumin prior to assessing airway resistance and inflammation after methacholine challenge. We found that mice lacking RAMP1 had reduced airway resistance and inflammation compared to wildtype animals. Additionally, we found that a 50% reduction of CLR, the G-protein receptor component of the CGRP receptor, also ameliorated airway resistance and inflammation in this model of allergic asthma. Interestingly, the loss of CLR from the smooth muscle cells did not alter the airway resistance, indicating that CGRP does not act directly on the smooth muscle cells to drive airway hyperresponsiveness. Together, these data indicate that signaling through RAMP1 and CLR plays a role in mediating asthma pathology. Since RAMP1 and CLR interact to form a receptor for CGRP, our data indicate that aberrant CGRP signaling, perhaps on lung endothelial and inflammatory cells, contributes to asthma pathophysiology. Finally, since RAMP-receptor interfaces are pharmacologically tractable, it may be possible to develop compounds targeting the RAMP1/CLR interface to assist in the treatment of asthma.
    PLoS ONE 07/2014; 9(7):e102356. DOI:10.1371/journal.pone.0102356 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Myofibroblast differentiation induced by transforming growth factor-beta (TGF-beta) is characterized by the expression of smooth muscle alpha-actin (SMA) and extracellular matrix proteins. We and others have previously shown that these changes are regulated by protein kinase A (PKA). Adrenomedullin (ADM) is a vasodilator peptide that activates cAMP/PKA signaling through the calcitonin-receptor-like receptor (CRLR) and receptor-activity-modifying proteins (RAMP). In this study, we found that recombinant ADM had little effect on cAMP/PKA in quiescent human pulmonary fibroblasts, while it induced a profound activation of cAMP/PKA signaling in differentiated (by TGF-beta) myofibroblasts. In contrast, the prostacyclin agonist iloprost was equally effective at activating PKA in both quiescent fibroblasts and differentiated myofibroblasts. TGF-beta stimulated a profound expression of CRLR with a time course that mirrored the increased PKA responses to ADM. The TGF-beta receptor kinase inhibitor, SB431542, abolished expression of CRLR and attenuated the PKA responses of cells to ADM, but not to iloprost. CRLR expression was also dramatically increased in lungs from bleomycin-treated mice. Functionally, ADM did not affect initial differentiation of quiescent fibroblasts in response to TGF-beta, but significantly attenuated the expression of SMA, collagen-1 and fibronectin in pre-differentiated myofibroblasts, which was accompanied by decreased contractility of myofibroblasts. Finally, sensitization of ADM signaling by transgenic overexpression of RAMP2 in myofibroblasts resulted in enhanced survival and reduced pulmonary fibrosis in the bleomycin model of the disease. In conclusion, differentiated pulmonary myofibroblasts gain responsiveness to ADM via increased CRLR expression, suggesting the possibility of using ADM for targeting pathologic myofibroblasts without affecting normal fibroblasts.
    AJP Lung Cellular and Molecular Physiology 04/2013; 304(11). DOI:10.1152/ajplung.00262.2012 · 4.04 Impact Factor

Full-text (2 Sources)

Available from
May 15, 2014