Article

New insights concerning the role of carnitine in the regulation of fuel metabolism in skeletal muscle.

Centre for Integrated Systems Biology and Medicine, School of Biomedical Sciences, Queen's Medical Centre, University of Nottingham, Nottingham NG7 2UH, UK.
The Journal of Physiology (Impact Factor: 4.54). 07/2007; 581(Pt 2):431-44. DOI: 10.1113/jphysiol.2006.125799
Source: PubMed

ABSTRACT In skeletal muscle, carnitine plays an essential role in the translocation of long-chain fatty-acids into the mitochondrial matrix for subsequent beta-oxidation, and in the regulation of the mitochondrial acetyl-CoA/CoASH ratio. Interest in these vital metabolic roles of carnitine in skeletal muscle appears to have waned over the past 25 years. However, recent research has shed new light on the importance of carnitine as a regulator of muscle fuel selection. It has been established that muscle free carnitine availability may be limiting to fat oxidation during high intensity submaximal exercise. Furthermore, increasing muscle total carnitine content in resting healthy humans (via insulin-mediated stimulation of muscle carnitine transport) reduces muscle glycolysis, increases glycogen storage and is accompanied by an apparent increase in fat oxidation. By increasing muscle pyruvate dehydrogenase complex (PDC) activity and acetylcarnitine content at rest, it has also been established that PDC flux and acetyl group availability limits aerobic ATP re-synthesis at the onset of exercise (the acetyl group deficit). Thus, carnitine plays a vital role in the regulation of muscle fuel metabolism. The demonstration that its availability can be readily manipulated in humans, and impacts on physiological function, will result in renewed business and scientific interest in this compound.

0 Followers
 · 
198 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously developed chemically defined media suitable for in vitro production (IVP) of porcine embryos and subsequently generated piglets by nonsurgical embryo transfer. In this study, to further improve the culture conditions for IVP of porcine embryos, we evaluated the effect of knockout serum replacement (KSR), a substitute for serum or albumin, on the viability and development of porcine blastocysts. The addition of 5% (v:v) KSR to porcine blastocyst medium (PBM) on Day 5 (Day 0 = IVF) significantly increased the survival and hatching rates of blastocysts and the total cell number of Day-7 blastocysts compared with those in cultures without KSR or addition of 10% fetal bovine serum. Furthermore, the number of cells in the trophectoderm of Day-6 blastocysts and the ATP content of Day-7 blastocysts cultured with 5% KSR were significantly higher than those of blastocysts cultured without KSR. The mRNA expression of a rate-limiting enzyme in β-oxidation, carnitine palmitoyltransferase 1, in Day-6 blastocysts, and a serine proteinase, urokinase-type plasminogen activator, in Day-7 blastocysts cultured in 5% KSR-PBM was significantly higher than that of blastocysts cultured in PBM alone. Four of eight recipients (50%), in which Day-5 blastocysts treated with 5% KSR were transferred nonsurgically, became pregnant. However, the efficiency of piglet production (percentage of piglets born based on the number of embryos transferred) was similar to recipients with transferred blastocysts treated without KSR. The present study demonstrated that the addition of KSR to PBM enhanced the in vitro viability of porcine blastocysts. In addition, our data suggest that KSR improved development to the hatching stage and blastocyst quality by increasing ATP content and hatching-related mRNA expression of blastocysts.
    Theriogenology 03/2015; 83(4):679-686. DOI:10.1016/j.theriogenology.2014.11.003 · 1.85 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Carnitine is well recognized as a key regulator of long-chain fatty acyl group translocation into the mitochondria. In addition, carnitine, as acetylcarnitine, acts as an acceptor of excess acetyl-CoA, a potent inhibitor of pyruvate dehydrogenase. Here, we provide a new methodology for accurate quantification of acetylcarnitine content and determination of its localization in skeletal muscles. We used matrix-assisted laser desorption/ionization imaging mass spectrometry (MALDI-IMS) to visualize acetylcarnitine distribution in rat skeletal muscles. MALDI-IMS and immunohistochemistry of serial cross-sections showed that acetylcarnitine was enriched in the slow-type muscle fibers. The concentration of ATP was lower in muscle regions with abundant acetylcarnitine, suggesting a relationship between acetylcarnitine and metabolic activity. Using our novel method, we detected an increase in acetylcarnitine content after muscle contraction. Importantly, this increase was not detected using traditional biochemical assays of homogenized muscles. We also demonstrated that acetylation of carnitine during muscle contraction was concomitant with glycogen depletion. Our methodology would be useful for quantification of acetylcarnitine and its contraction-induced kinetics in skeletal muscles.
    Biochimica et Biophysica Acta (BBA) - Bioenergetics 05/2014; 1837(10). DOI:10.1016/j.bbabio.2014.05.356 · 4.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: As the incidence of metabolic syndrome increases, there is also a growing interest in finding safe and inexpensive treatments to help lower associated risk factors. l-carntine, a natural dietary supplement with the potential to ameliorate atherosclerosis, has been the subject of recent investigation and controversy. A majority of studies have shown benefit of l-C supplementation in the metabolic syndrome or cardiovascular risk factors. However, recent work has suggested that dietary l-C may accelerate atherosclerosis via gut microbiota metabolites, complicating the role of l-C supplementation in health.
    Nutrition, metabolism, and cardiovascular diseases: NMCD 04/2014; 24(8). DOI:10.1016/j.numecd.2014.03.007 · 3.88 Impact Factor