Article

Neuropathologic heterogeneity in HDDD1: a familial frontotemporal lobar degeneration with ubiquitin-positive inclusions and progranulin mutation.

Alzheimer's Disease Research Center, Department of Pathology and Immunology, Washington University School of Medicine, 660 South Euclid Avenue, St Louis, MO 63110, USA.
Alzheimer Disease and Associated Disorders (Impact Factor: 2.69). 01/2007; 21(1):1-7. DOI: 10.1097/WAD.0b013e31803083f2
Source: PubMed

ABSTRACT Hereditary dysphasic disinhibition dementia (HDDD) describes a familial disorder characterized by personality changes, and language and memory deficits. The neuropathology includes frontotemporal lobar atrophy, neuronal loss and gliosis and, in most cases, abundant Abeta plaques and neurofibrillary tangles (NFTs). A Pick/Alzheimer's spectrum was proposed for the original family (HDDD1). Here we report the clinicopathologic case of an HDDD1 individual using modern immunohistochemical methods, contemporary neuropathologic diagnostic criteria to distinguish different frontotemporal lobar degenerations (FTLDs), and progranulin (PRGN) mutation analysis. Clinical onset was at age 62 years with personality changes and disinhibition, followed by nonfluent dysphasia, and memory loss that progressed to muteness and total dependence with death at age 84 years. There was severe generalized brain atrophy (weight=570 g). Histopathology showed superficial microvacuolation, marked neuronal loss, gliosis, and ubiquitin-positive, tau-negative cytoplasmic and intranuclear neuronal inclusions in frontal, temporal, and parietal cortices. There were also frequent neuritic plaques and NFTs in parietal and occipital cortices. The case met neuropathologic criteria for both FTLD with ubiquitin-positive, tau-negative inclusions (FTLD-U), and Alzheimer disease (Braak NFT stage V). We discovered a novel pathogenic PGRN mutation c.5913 A>G (IVS6-2 A>G) segregating with FTLD-U in this kindred. In conclusion, HDDD1 is an FTLD-U caused by a PGRN mutation and is neuropathologically heterogeneous with Alzheimer disease as a common comorbidity.

0 Followers
 · 
119 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Mutations in the progranulin gene (GRN) are a common cause of familial frontotemporal dementia. We used a comprehensive neuropsychological battery to investigate whether early cognitive changes could be detected in GRN mutation carriers before dementia onset. Twenty-four at-risk members from six families with known GRN mutations underwent detailed neuropsychological testing. Group differences were investigated by domains of attention, language, visuospatial function, verbal memory, non-verbal memory, working memory and executive function. There was a trend for mutation carriers (n=8) to perform more poorly than non-carriers (n=16) across neuropsychological domains, with significant between group differences for visuospatial function (p<.04; d=0.92) and working memory function (p<.02; d=1.10). Measurable cognitive differences exist before the development of frontotemporal dementia in subjects with GRN mutations. The neuropsychological profile of mutation carriers suggests early asymmetric, right hemisphere brain dysfunction that is consistent with recent functional imaging data from our research group and the broader literature. (JINS, 2014, 20, 1-10).
    Journal of the International Neuropsychological Society 07/2014; DOI:10.1017/S1355617714000551 · 3.01 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Abstract Familial frontotemporal lobar degeneration with transactive response (TAR) DNA-binding protein of 43kDa (TDP-43) proteinopathy (FTLD-TDP) is most commonly caused by progranulin (GRN) gene mutation. To characterize cortical degeneration in these cases, changes in density of the pathology across the cortical laminae of the frontal and temporal lobe were studied in seven cases of FTLD-TDP with GRN mutation using quantitative analysis and polynomial curve fitting. In 50% of gyri studied, neuronal cytoplasmic inclusions (NCI) exhibited a peak of density in the upper cortical laminae. Most frequently, neuronal intranuclear inclusions (NII) and dystrophic neurites (DN) exhibited a density peak in lower and upper laminae respectively, glial inclusions (GI) being distributed in low densities across all laminae. Abnormally enlarged neurons (EN) were distributed either in the lower laminae or were more uniformly distributed across the cortex. The distribution of all neurons present varied between cases and regions, but most commonly exhibited a bimodal distribution, density peaks occurring in upper and lower laminae. Vacuolation primarily affected the superficial laminae and density of glial cell nuclei increased with distance across the cortex from pia mater to white matter. The densities of the NCI, GI, NII, and DN were not spatially correlated. The laminar distribution of the pathology in GRN mutation cases was similar to previously reported sporadic cases of FTLD-TDP. Hence, pathological changes initiated by GRN mutation, and by other causes in sporadic cases, appear to follow a parallel course resulting in very similar patterns of cortical degeneration in FTLD-TDP.
    The International journal of neuroscience 02/2014; DOI:10.3109/00207454.2014.890620 · 1.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Frontotemporal lobar degeneration (FTLD) comprises two main classes of neurodegenerative diseases characterized by neuronal/glial proteinaceous inclusions (i.e., proteinopathies) including tauopathies (i.e., FTLD-Tau) and TDP-43 proteinopathies (i.e., FTLD-TDP) while other very rare forms of FTLD are known such as FTLD with FUS pathology (FTLD-FUS). This review focuses mainly on FTLD-Tau and FLTD-TDP, which may present as several clinical syndromes: a behavioral/dysexecutive syndrome (behavioral variant frontotemporal dementia); language disorders (primary progressive aphasia variants); and motor disorders (amyotrophic lateral sclerosis, corticobasal syndrome, progressive supranuclear palsy syndrome). There is considerable heterogeneity in clinical presentations of underlying neuropathology and current clinical criteria do not reliably predict underlying proteinopathies ante-mortem. In contrast, molecular etiologies of hereditary FTLD are consistently associated with specific proteinopathies. These include MAPT mutations with FTLD-Tau and GRN, C9orf72, VCP and TARDBP with FTLD-TDP. The last decade has seen a rapid expansion in our knowledge of the molecular pathologies associated with this clinically and neuropathologically heterogeneous group of FTLD diseases. Moreover, in view of current limitations to reliably diagnose specific FTLD neuropathologies prior to autopsy, we summarize the current state of the science in FTLD biomarker research including neuroimaging, biofluid and genetic analyses. We propose that combining several of these biomarker modalities will improve diagnostic specificity in FTLD through a personalized medicine approach. The goals of these efforts are to enhance power for clinical trials focused on slowing or preventing progression of spread of tau, TDP-43 and other FTLD-associated pathologies and work toward the goal of defining clinical endophenotypes of FTD.
    Acta Neuropathologica 12/2014; 129(4). DOI:10.1007/s00401-014-1380-1 · 9.78 Impact Factor