Article

Regulation of anterior insular cortex activity using real-time fMRI.

Institute of Medical Psychology and Behavioral Neurobiology, Eberhard-Karls-University of Tübingen, Tübingen, Germany. <>
NeuroImage (Impact Factor: 6.13). 05/2007; 35(3):1238-46. DOI: 10.1016/j.neuroimage.2007.01.018
Source: PubMed

ABSTRACT Recent advances in functional magnetic resonance imaging (fMRI) data acquisition and processing techniques have made real-time fMRI (rtfMRI) of localized brain areas feasible, reliable and less susceptible to artefacts. Previous studies have shown that healthy subjects learn to control local brain activity with operant training by using rtfMRI-based neurofeedback. In the present study, we investigated whether healthy subjects could voluntarily gain control over right anterior insular activity. Subjects were provided with continuously updated information of the target ROI's level of activation by visual feedback. All participants were able to successfully regulate BOLD-magnitude in the right anterior insular cortex within three sessions of 4 min each. Training resulted in a significantly increased activation cluster in the anterior portion of the right insula across sessions. An increased activity was also found in the left anterior insula but the percent signal change was lower than in the target ROI. Two different control conditions intended to assess the effects of non-specific feedback and mental imagery demonstrated that the training effect was not due to unspecific activations or non feedback-related cognitive strategies. Both control groups showed no enhanced activation across the sessions, which confirmed our main hypothesis that rtfMRI feedback is area-specific. The increased activity in the right anterior insula during training demonstrates that the effects observed are anatomically specific and self-regulation of right anterior insula only is achievable. This is the first group study investigating the volitional control of emotionally relevant brain region by using rtfMRI training and confirms that self-regulation of local brain activity with rtfMRI is possible.

2 Bookmarks
 · 
135 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Task performance depends on ongoing brain activity which can be influenced by attention, arousal, or motivation. However, such modulating factors of cognitive efficiency are unspecific, can be difficult to control, and are not suitable to facilitate neural processing in a regionally specific manner. Here, we non-pharmacologically manipulated regionally specific brain activity using technically sophisticated real-time fMRI neurofeedback. This was accomplished by training participants to simultaneously control ongoing brain activity in circumscribed motor and memory-related brain areas, namely the supplementary motor area and the parahippocampal cortex. We found that learned voluntary control over these functionally distinct brain areas caused functionally specific behavioral effects, i.e. shortening of motor reaction times and specific interference with memory encoding. The neurofeedback approach goes beyond improving cognitive efficiency by unspecific psychological factors such as attention, arousal, or motivation. It allows for directly manipulating sustained activity of task-relevant brain regions in order to yield specific behavioral or cognitive effects. Copyright © 2015. Published by Elsevier B.V.
    Biological psychology 03/2015; 220. DOI:10.1016/j.biopsycho.2015.03.009 · 4.36 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Working memory refers to the ability to temporarily store and manipulate information that is necessary for complex cognition activities. Previous studies have demonstrated that working memory capacity can be improved by behavioral training, and brain activities in the frontal and parietal cortices and the connections between these regions are also altered by training. Our recent neurofeedback training has proven that the regulation of the left dorsal lateral prefrontal cortex (DLPFC) activity using real-time functional magnetic resonance imaging (rtfMRI) can improve working memory performance. However, how working memory training promotes the interaction between brain regions and whether this promotion correlates with performance improvement remain unclear. In this study, we employed structural equation modeling (SEM) to calculate the interactions between the regions within the working memory network during the neurofeedback training. The results revealed that the direct effect of the frontoparietal connection in the left hemisphere was enhanced by the rtfMRI training. Specifically, the increase in the path from the left DLPFC to the left inferior parietal lobule (IPL) was positively correlated with improved performance in verbal working memory. These findings demonstrate the important role of the frontoparietal connection in working memory training and suggest that increases in frontoparietal connectivity might be a key factor associated with behavioral improvement. Copyright © 2015. Published by Elsevier Ltd.
    Neuroscience 01/2015; 289. DOI:10.1016/j.neuroscience.2014.12.071 · 3.33 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In this pilot study near-infrared spectroscopy (NIRS) neurofeedback was investigated as a new method for the treatment of ADHD. Oxygenated hemoglobin in the prefrontal cortex of children with ADHD was measured and fed back. 12 sessions of NIRS-neurofeedback were compared to the intermediate outcome after 12 sessions of EEG-neurofeedback (slow cortical potentials, SCP) and 12 sessions of EMG-feedback (muscular activity of left and right musculus supraspinatus). The task was either to increase or decrease hemodynamic activity in the prefrontal cortex (NIRS), to produce positive or negative shifts of SCP (EEG) or to increase or decrease muscular activity (EMG). In each group nine children with ADHD, aged 7 to 10 years, took part. Changes in parents’ ratings of ADHD symptoms were assessed before and after the 12 sessions and compared within and between groups. For the NIRS-group additional teachers’ ratings of ADHD symptoms, parents’ and teachers’ ratings of associated behavioral symptoms, childrens’ self reports on quality of life and a computer based attention task were conducted before, 4 weeks and 6 months after training. As primary outcome, ADHD symptoms decreased significantly 4 weeks and 6 months after the NIRS training, according to parents’ ratings. In teachers’ ratings of ADHD symptoms there was a significant reduction 4 weeks after the training. The performance in the computer based attention test improved significantly. Within-group comparisons after 12 sessions of NIRS-, EEG- and EMG-training revealed a significant reduction in ADHD symptoms in the NIRS-group and a trend for EEG- and EMG-groups. No significant differences for symptom reduction were found between the groups. Despite the limitations of small groups and the comparison of a completed with two uncompleted interventions, the results of this pilot study are promising. NIRS-neurofeedback could be a time-effective treatment for ADHD and an interesting new option to consider in the treatment of ADHD.
    Frontiers in Human Neuroscience 01/2014; 8:1038. DOI:10.3389/fnhum.2014.01038 · 2.90 Impact Factor

Full-text (2 Sources)

Download
173 Downloads
Available from
Jun 1, 2014