Cutting Edge: Antibody-mediated TLR7-dependent recognition of viral RNA.

Department of Medicine, University of Massachusetts, 364 Plantation, Worcester, MA 01605, USA.
The Journal of Immunology (Impact Factor: 5.36). 04/2007; 178(6):3363-7. DOI: 10.4049/jimmunol.178.6.3363
Source: PubMed

ABSTRACT TLR7 recognizes the genome of ssRNA viruses such as Coxsackievirus B. Because TLR7 is expressed in intracellular compartments, viral RNA must be internalized before its recognition by TLR7. In this study, we define plasmacytoid dendritic cells (pDC) as peripheral blood mononuclear immune cells that respond to Coxsackievirus. pDC activation by Coxsackievirus B requires the presence of specific antiviral Abs. We show that Fc receptors mediate the recognition of virus-Ab complexes and that TLR7 is required for human and murine pDC production of cytokines. These data define a pathway by which intracellular TLR7 senses viral RNA and indicate a role for TLRs in association with Abs in sustaining virus-specific responses.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Unlike other picornaviruses, hepatitis A virus (HAV) is cloaked in host membranes when released from cells, providing protection from neutralizing antibodies and facilitating spread in the liver. Acute HAV infection is typified by minimal type I IFN responses; therefore, we questioned whether plasmacytoid dendritic cells (pDCs), which produce IFN when activated, are capable of sensing enveloped virions (eHAV). Although concentrated nonenveloped virus failed to activate freshly isolated human pDCs, these cells produced substantial amounts of IFN-α via TLR7 signaling when cocultured with infected cells. pDCs required either close contact with infected cells or exposure to concentrated culture supernatants for IFN-α production. In isopycnic and rate-zonal gradients, pDC-activating material cosedimented with eHAV but not membrane-bound acetylcholinesterase, suggesting that eHAV, and not viral RNA exosomes, is responsible for IFN-α induction. pDC activation did not require virus replication and was associated with efficient eHAV uptake, which was facilitated by phosphatidylserine receptors on pDCs. In chimpanzees, pDCs were transiently recruited to the liver early in infection, during or shortly before maximal intrahepatic IFN-stimulated gene expression, but disappeared prior to inflammation onset. Our data reveal that, while membrane envelopment protects HAV against neutralizing antibody, it also facilitates an early but limited detection of HAV infection by pDCs.
    Journal of Clinical Investigation 11/2014; 125(1). DOI:10.1172/JCI77527 · 13.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Increasing evidence suggests that type 1 IFN (IFN-αβ) is associated with pathogenesis of Th1-mediated type 1 diabetes (T1D). A major source of IFN-αβ is plasmacytoid dendritic cells (pDCs). In this study, we analyzed peripheral blood pDC numbers and functions in at-risk, new-onset, and established T1D patients and controls. We found that subjects at risk for T1D and new-onset and established T1D subjects possessed significantly increased pDCs but similar number of myeloid DCs when compared with controls. pDC numbers were not affected by age in T1D subjects but declined with increasing age in control subjects. It was demonstrated that IFN-α production by PBMCs stimulated with influenza viruses was significantly higher in T1D subjects than in controls, and IFN-α production was correlated with pDC numbers in PBMCs. Of interest, only T1D-associated Coxsackievirus serotype B4 but not B3 induced majority of T1D PBMCs to produce IFN-α, which was confirmed to be secreted by pDCs. Finally, in vitro studies demonstrated IFN-α produced by pDCs augmented Th1 responses, with significantly greater IFN-γ-producing CD4(+) T cells from T1D subjects. These findings indicate that increased pDCs and their IFN-αβ production may be associated with this Th1-mediated autoimmune disease, especially under certain viral infections linked to T1D pathogenesis.
    The Journal of Immunology 06/2014; 193(4). DOI:10.4049/jimmunol.1303230 · 5.36 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Identifying the mechanisms of natural control of HIV-1 infection could lead to novel approaches to prevent or cure HIV infection. Several studies have associated natural control of HIV-1 infection with IgG Abs against HIV-1 Gag proteins (e.g., p24) and/or production of IgG2 Abs against HIV-1 proteins. These Abs likely exert their effect by activating antiviral effector cell responses rather than virus neutralization. We hypothesized that an opsonophagocytic IgG Ab response against HIV-1 p24 that activates plasmacytoid dendritic cells (pDCs) through FcγRIIa would be associated with control of HIV and that this would be enhanced by Ab isotype diversification. Using the Gen2.2 pDC cell line, we demonstrated that pDC-reactive opsonophagocytic IgG Ab responses against HIV-1 p24 were higher in HIV controllers (HIV RNA < 2000 copies/ml) than noncontrollers (HIV RNA > 10,000 copies/ml), particularly in controllers with low but detectable viremia (HIV RNA 75-2000 copies/ml). Opsonophagocytic Ab responses correlated with plasma levels of IgG1 and IgG2 anti-HIV-1 p24 and, notably, correlated inversely with plasma HIV RNA levels in viremic HIV patients. Phagocytosis of these Abs was mediated via FcγRIIa. Isotype diversification (toward IgG2) was greatest in HIV controllers, and depletion of IgG2 from Ig preparations indicated that IgG2 Abs to HIV-1 p24 do not enhance phagocytosis, suggesting that they enhance other aspects of Ab function, such as Ag opsonization. Our findings emulate those for pDC-reactive opsonophagocytic Ab responses against coxsackie, picorna, and influenza viruses and demonstrate a previously undefined immune correlate of HIV-1 control that may be relevant to HIV vaccine development. Copyright © 2015 by The American Association of Immunologists, Inc.
    The Journal of Immunology 04/2015; DOI:10.4049/jimmunol.1402918 · 5.36 Impact Factor