Article

Function of a conserved checkpoint recruitment domain in ATRIP proteins.

Department of Biochemistry, Vanderbilt University, Nashville, TN 37232, USA.
Molecular and Cellular Biology (Impact Factor: 5.04). 06/2007; 27(9):3367-77. DOI: 10.1128/MCB.02238-06
Source: PubMed

ABSTRACT The ATR (ATM and Rad3-related) kinase is essential to maintain genomic integrity. ATR is recruited to DNA lesions in part through its association with ATR-interacting protein (ATRIP), which in turn interacts with the single-stranded DNA binding protein RPA (replication protein A). In this study, a conserved checkpoint protein recruitment domain (CRD) in ATRIP orthologs was identified by biochemical mapping of the RPA binding site in combination with nuclear magnetic resonance, mutagenesis, and computational modeling. Mutations in the CRD of the Saccharomyces cerevisiae ATRIP ortholog Ddc2 disrupt the Ddc2-RPA interaction, prevent proper localization of Ddc2 to DNA breaks, sensitize yeast to DNA-damaging agents, and partially compromise checkpoint signaling. These data demonstrate that the CRD is critical for localization and optimal DNA damage responses. However, the stimulation of ATR kinase activity by binding of topoisomerase binding protein 1 (TopBP1) to ATRIP-ATR can occur independently of the interaction of ATRIP with RPA. Our results support the idea of a multistep model for ATR activation that requires separable localization and activation functions of ATRIP.

0 Followers
 · 
89 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ATR/Chk1 pathway is a critical surveillance network that maintains genomic integrity during DNA replication by stabilizing the replication forks during normal replication to avoid replication stress. One of the many differences between normal cells and cancer cells is the amount of replication stress that occurs during replication. Cancer cells with activated oncogenes generate increased levels of replication stress. This creates an increased dependency on the ATR/Chk1 pathway in cancer cells and opens up an opportunity to preferentially kill cancer cells by inhibiting this pathway. In support of this idea, we have identified a small molecule termed HAMNO ((1Z)-1-[(2-hydroxyanilino)methylidene]naphthalen-2-one), a novel protein interaction inhibitor of replication protein A (RPA), a protein involved in the ATR/Chk1 pathway. HAMNO selectively binds the N-terminal domain of RPA70, effectively inhibiting critical RPA protein interactions which rely on this domain. HAMNO inhibits both ATR autophosphorylation and phosphorylation of RPA32 Ser33 by ATR. By itself, HAMNO treatment creates DNA replication stress in cancer cells that are already experiencing replication stress, but not in normal cells, and it acts synergistically with etoposide to kill cancer cells in vitro and slow tumor growth in vivo. Thus, HAMNO illustrates how RPA inhibitors represent candidate therapeutics for cancer treatment, providing disease selectivity in cancer cells by targeting their differential response to replication stress.
    Cancer Research 07/2014; 74(18). DOI:10.1158/0008-5472.CAN-14-0306 · 9.28 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Simian virus 40 (SV40) serves as an important model organism for studying eukaryotic DNA replication. Its helicase, Large T-antigen (Tag), is a multi-functional protein that interacts with multiple host proteins, including the ubiquitous ssDNA binding protein Replication Protein A (RPA). Tag recruits RPA, actively loads it onto the unwound DNA, and together they promote priming of the template. Although interactions of Tag with RPA have been mapped, no interaction between Tag and the N-terminal protein interaction domain of the RPA 70kDa subunit (RPA70N) has been reported. Here we provide evidence of direct physical interaction of Tag with RPA70N and map the binding sites using a series of pull-down and mutational experiments. In addition, a monoclonal anti-Tag antibody, the epitope of which overlaps with the binding site, blocks the binding of Tag to RPA70N. We use NMR chemical shift perturbation analysis to show that Tag uses the same basic cleft in RPA70N as multiple of DNA damage response proteins. Mutations in the binding sites of both RPA70N and Tag demonstrate that specific charge reversal substitutions in either binding partner strongly diminish the interaction. These results expand the known repertoire of contacts between Tag and RPA, which mediate the many critical roles of Tag in viral replication.
    PLoS ONE 02/2015; 10(2):e0116093. DOI:10.1371/journal.pone.0116093 · 3.53 Impact Factor
  • Frontiers in Bioscience 01/2010; 15(1):840. DOI:10.2741/3649 · 4.25 Impact Factor

Preview

Download
0 Downloads
Available from