Article

Evaluation of phosphenes elicited by extraocular stimulation in normals and by suprachoroidal-transretinal stimulation in patients with retinitis pigmentosa

Department of Applied Visual Science, Osaka University Graduate School of Medicine, Osaka, Japan.
Albrecht von Graæes Archiv für Ophthalmologie (Impact Factor: 2.33). 10/2007; 245(10):1411-9. DOI: 10.1007/s00417-007-0563-z
Source: PubMed

ABSTRACT To determine the efficient parameters to evoke electrical phosphenes is essential for the development of a retinal prosthesis. We studied the efficient parameters in normal subjects and investigated if suprachoroidal-transretinal stimulation (STS) is effective in patients with advanced retinitis pigmentosa (RP) using these efficient parameters.
The amplitude of pupillary reflex (PR) evoked by transcorneal electrical stimulation (TcES) was determined at different frequencies in eight normal subjects. The relationship between localized phosphenes elicited by transscleral electrical stimulation (TsES) and the pulse parameters was also examined in six normal subjects. The phosphenes evoked by STS were examined in two patients with RP with bare light perception. Biphasic pulses (cathodic first, duration: 0.5 or 1.0 ms, frequency: 20 Hz) were applied through selected channel(s). The size and shape of the phosphenes perceived by the patients were recorded.
The maximum PR was evoked by TcES with a frequency of 20 Hz. The brightest phosphene was elicited by TsES with a pulse train of more than 10 pulses, duration of 0.5-1.0 ms and a frequency of 20 to 50 Hz. In RP patients, localized phosphenes were elicited with a current of 0.3-0.5 mA (0.5 ms) in patient 1 and 0.4 mA (1.0 ms) in patient 2. Two isolated or dumbbell-shaped phosphenes were perceived when the stimulus was delivered through two adjacent channels.
Biphasic pulse trains (> or =10 pulses) with a duration of 0.5-1.0 ms and a frequency of 20-50 Hz were efficient for evoking phosphenes by localized extraocular stimulation in normal subjects. With these parameters, STS is a feasible method to use with a retinal prosthesis even in advanced stages of RPs.

0 Followers
 · 
86 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Purpose. The use of phosphenes evoked by transcorneal electrical stimulation (TcES) has been proposed as a means of residual visual function evaluation and candidate selection before implantation of retinal prostheses. Compared with the subjective measures, measurement of neuronal activity in visual cortex can objectively and quantitatively explore their response properties to electrical stimulation. The purpose of this study was to systematically investigate the properties of cortical responses evoked by TcES. Methods. The visual cortical responses were recorded using a multiwavelength optical imaging of intrinsic signals (OIS) combining with electrophysiological recording by a multichannel electrode array. The effects of different parameters of TcES on cortical responses, including the changes of hemoglobin oxygenation and cerebral blood volume, were examined. Results. We found consistent OIS activation regions in visual cortex after TcES, where also showed strong evoked field potentials according to electrophysiological results. OIS response regions were mainly located in cortical areas representing peripheral visual field. Both the extent of activation areas and the strength of intrinsic signals were increased with higher current intensities and longer pulse widths, and the largest responses were acquired in the frequency range 10 to 20 Hz. Conclusions. TcES through ERG-jet corneal electrode may preferentially activate peripheral retina. Revealing the hemodynamic changes in visual cortex occurred after electrical stimulation can contribute to comprehension of neurophysiological underpinnings underlying prosthetic vision. This study provided an objective foundation for optimizing parameters of TcES and would bring considerable benefits in the application of TcES for assessment and screening in patients.
    Investigative Ophthalmology &amp Visual Science 07/2014; 55(8). DOI:10.1167/iovs.14-14600 · 3.66 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Retinal visual prostheses ("bionic eyes") have the potential to restore vision to blind or profoundly vision-impaired patients. The medical bionic technology used to design, manufacture and implant such prostheses is still in its relative infancy, with various technologies and surgical approaches being evaluated. We hypothesised that a suprachoroidal implant location (between the sclera and choroid of the eye) would provide significant surgical and safety benefits for patients, allowing them to maintain preoperative residual vision as well as gaining prosthetic vision input from the device. This report details the first-in-human Phase 1 trial to investigate the use of retinal implants in the suprachoroidal space in three human subjects with end-stage retinitis pigmentosa. The success of the suprachoroidal surgical approach and its associated safety benefits, coupled with twelve-month post-operative efficacy data, holds promise for the field of vision restoration. Clinicaltrials.gov NCT01603576.
    PLoS ONE 12/2014; 9(12):e115239. DOI:10.1371/journal.pone.0115239 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Objective. The research goal is to develop a wide-field retinal stimulating array for prosthetic vision. This study aimed at evaluating the efficacy of a suprachoroidal electrode array in evoking visual cortex activity after long term implantation. Approach. A planar silicone based electrode array (8 mm × 19 mm) was implanted into the suprachoroidal space in cats (ntotal = 10). It consisted of 20 platinum stimulating electrodes (600 μm diameter) and a trans-scleral cable terminated in a subcutaneous connector. Three months after implantation (nchronic = 6), or immediately after implantation (nacute = 4), an electrophysiological study was performed. Electrode total impedance was measured from voltage transients using 500 μs, 1 mA pulses. Electrically evoked potentials (EEPs) and multi-unit activity were recorded from the visual cortex in response to monopolar retinal stimulation. Dynamic range and cortical activation spread were calculated from the multi-unit recordings. Main results. The mean electrode total impedance in vivo following 3 months was 12.5 ± 0.3 kΩ. EEPs were recorded for 98% of the electrodes. The median evoked potential threshold was 150 nC (charge density 53 μC cm(-2)). The lowest stimulation thresholds were found proximal to the area centralis. Mean thresholds from multiunit activity were lower for chronic (181 ± 14 nC) compared to acute (322 ± 20 nC) electrodes (P < 0.001), but there was no difference in dynamic range or cortical activation spread. Significance. Suprachoroidal stimulation threshold was lower in chronic than acute implantation and was within safe charge limits for platinum. Electrode-tissue impedance following chronic implantation was higher, indicating the need for sufficient compliance voltage (e.g. 12.8 V for mean impedance, threshold and dynamic range). The wide-field suprachoroidal array reliably activated the retina after chronic implantation.
    Journal of Neural Engineering 06/2014; 11(4):046017. DOI:10.1088/1741-2560/11/4/046017 · 3.42 Impact Factor