Article

Site-directed transposon integration in human cells.

Department of Pediatrics and Genetics, Stanford University School of Medicine, Stanford, CA 94305-5208, USA.
Nucleic Acids Research (Impact Factor: 8.81). 02/2007; 35(7):e50. DOI: 10.1093/nar/gkm089
Source: PubMed

ABSTRACT The Sleeping Beauty (SB) transposon is a promising gene transfer vector that integrates nonspecifically into host cell genomes. Herein, we attempt to direct transposon integration into predetermined DNA sites by coupling a site-specific DNA-binding domain (DBD) to the SB transposase. We engineered fusion proteins comprised of a hyperactive SB transposase (HSB5) joined via a variable-length linker to either end of the polydactyl zinc-finger protein E2C, which binds a unique sequence on human chromosome 17. Although DBD linkage to the C-terminus of SB abolished activity in a human cell transposition assay, the N-terminal addition of the E2C or Gal4 DBD did not. Molecular analyses indicated that these DBD-SB fusion proteins retained DNA-binding specificity for their respective substrate molecules and were capable of mediating bona fide transposition reactions. We also characterized transposon integrations in the presence of the E2C-SB fusion protein to determine its potential to target predefined DNA sites. Our results indicate that fusion protein-mediated tethering can effectively redirect transposon insertion site selection in human cells, but suggest that stable docking of integration complexes may also partially interfere with the cut-and-paste mechanism. These findings illustrate the feasibility of directed transposon integration and highlight potential means for future development.

0 Bookmarks
 · 
105 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gene therapy offers important perspectives in current and future medicine but suffers from imperfect vectors for the delivery of the therapeutic gene. Most preclinical and clinical trials have been based on the use of viral vectors, which have evident advantages but also some serious disadvantages. In the past decade the use of DNA transposon-based systems for gene delivery has emerged as a non-viral alternative. DNA transposon vector engineering remains largely in a preclinical phase but some interesting results have been obtained. This mini-review aims to provide the current state of the art on DNA transposon vectors used in a gene therapy perspective. Freely available at http://www.scirp.org/journal/ojgen/
    Open Journal of Genetics 06/2013; 3(2A1):1-11.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Insertional therapies have shown great potential for combating genetic disease and safer methods would undoubtedly broaden the variety of possible illness that can be treated. A major challenge that remains is reducing the risk of insertional mutagenesis due to random insertion by both viral and non-viral vectors. Targetable nucleases are capable of inducing double-stranded breaks to enhance homologous recombination for the introduction of transgenes at specific sequences. However, off-target DNA cleavages at unknown sites can lead to mutations that are difficult to detect. Alternatively, the piggyBac transposase is able perform all of the steps required for integration; therefore, cells confirmed to contain a single copy of a targeted transposon, for which its location is known, are likely to be devoid of aberrant genomic modifications. We aimed to retarget transposon insertions by comparing a series of novel hyperactive piggyBac constructs tethered to a custom transcription activator like effector DNA-binding domain designed to bind the first intron of the human CCR5 gene. Multiple targeting strategies were evaluated using combinations of both plasmid-DNA and transposase-protein relocalization to the target sequence. We demonstrated user-defined directed transposition to the CCR5 genomic safe harbor and isolated single-copy clones harboring targeted integrations.
    Nucleic Acids Research 08/2013; · 8.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Gene vectors derived from DNA transposable elements have become powerful molecular tools in biomedical research and are slowly moving into the clinic as carriers of therapeutic genes. Conventional uses of DNA transposon-based gene vehicles rely on the intracellular production of the transposase protein from transfected nucleic acids. The transposase mediates mobilization of the DNA transposon, which is typically provided in the context of plasmid DNA. In recent work, we established lentiviral protein transduction from Gag precursors as a new strategy for direct delivery of the transposase protein. Inspired by the natural properties of infecting viruses to carry their own enzymes, we loaded lentivirus-derived particles not only with vector genomes carrying the DNA transposon vector but also with hundreds of transposase subunits. Such particles were found to drive efficient transposition of the piggyBac transposable element in a range of different cell types, including primary cells, and offer a new transposase delivery approach that guarantees short-term activity and limits potential cytotoxicity. DNA transposon vectors, originally developed and launched as a non-viral alternative to viral integrating vectors, have truly become viral. Here, we briefly review our findings and speculate on the perspectives and potential advantages of transposase delivery by lentiviral protein transduction.
    Mobile genetic elements. 01/2014; 4:e29591.

Full-text (2 Sources)

View
35 Downloads
Available from
May 22, 2014