Colicin biology.

Laboratoire d'Ingénierie des Systèmes Macromoléculaires,Institut de Biologie Structurale et Microbiologie, Centre National de la Recherche Scientifique, UPR 9027, 31 Chemin Joseph Aiguier, 13402 Marseille Cedex 20, France.
Microbiology and Molecular Biology Reviews (Impact Factor: 15.26). 04/2007; 71(1):158-229. DOI: 10.1128/MMBR.00036-06
Source: PubMed

ABSTRACT Colicins are proteins produced by and toxic for some strains of Escherichia coli. They are produced by strains of E. coli carrying a colicinogenic plasmid that bears the genetic determinants for colicin synthesis, immunity, and release. Insights gained into each fundamental aspect of their biology are presented: their synthesis, which is under SOS regulation; their release into the extracellular medium, which involves the colicin lysis protein; and their uptake mechanisms and modes of action. Colicins are organized into three domains, each one involved in a different step of the process of killing sensitive bacteria. The structures of some colicins are known at the atomic level and are discussed. Colicins exert their lethal action by first binding to specific receptors, which are outer membrane proteins used for the entry of specific nutrients. They are then translocated through the outer membrane and transit through the periplasm by either the Tol or the TonB system. The components of each system are known, and their implication in the functioning of the system is described. Colicins then reach their lethal target and act either by forming a voltage-dependent channel into the inner membrane or by using their endonuclease activity on DNA, rRNA, or tRNA. The mechanisms of inhibition by specific and cognate immunity proteins are presented. Finally, the use of colicins as laboratory or biotechnological tools and their mode of evolution are discussed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Escherichia coli (E. coli) O157:H7 is gram-negative enteric pathogen producing different types of Shiga toxin. This bacterium is the most corporate cause of haemorrhagic colitis in human. Administration of antibiotics (particularly sulfa drugs) against this pathogen is a debatable topic as this may increase the risk of uremic syndrome; especially in children and aged people. Around the world, microbiologists are in search of alternative therapeutic methods specially probiotics against this pathogen. In the present study, we have focused on the investigation of alternate bio-therapeutics (probiotics) for the treatment of patients infected with E. coli O157:H7. This study is based on the identification of colicin-producing gram-negative bacteria (particularly enterobacteriaceae) which can competently exclude E. coli O157:H7 from the gut of the infected individual. Hundred samples from human, animal faeces and septic tank water were analysed for nonpathogenic gram-negative rods (GNRs). Out of these samples, 175 isolates of GNRs were checked for their activity against E. coli O157:H7. Only 47 isolates inhibited the growth of E. coli O157:H7, among which majority were identified as E. coli. These E. coli strains were found to be the efficient producers of colicin. Some of the closely related species i. e., Citrobacter sp, Pantoea sp. and Kluyvera sp. also showed considerable colicinogenic activity. Moreover, colicinogenic species were found to be nonhaemolytic, tolerant to acidic environment (pH 3) and sensitive to commonly used antibiotics. Nonhaemolytic, acid tolerant and sensitive to antibiotics suggests the possible use of these circulating endothelial cells (CEC) as inexpensive and inoffensive therapeutic agent (probiotics) in E. coli O157:H7 infections.
    Indian Journal of Medical Microbiology 02/2015; 33 Suppl(5):S67-72. DOI:10.4103/0255-0857.150895 · 1.04 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: eLife digest Bacteria live in diverse and changing environments where resources such as nutrients and space are often limited. They have thus evolved many survival strategies, including competitive and cooperative behaviors. In the first case, bacteria antagonize or prevent the growth of other microorganisms competing with them for resources, such as by generating antibiotics that specifically target rivals. During cooperation, bacteria may coordinate the production of compounds that have a shared benefit for members of their community. In multicellular organisms, some cell types sense harmful microorganisms by the injury they cause in neighboring cells. This triggers a process that can lead to the production of molecules that kill the invaders and factors that promote the repair of cellular damage. An equivalent process has so far not been described for single-celled organisms such as bacteria. However, bacteria often live in structured groups containing many different species. In this type of growth environment, the ability of bacteria to sense when others of their species are attacked and to respond by taking measures to defend themselves could improve their chances of survival. Now, LeRoux et al. reveal that the bacterium Pseudomonas aeruginosa is able to detect ‘danger signals’ released when neighboring P. aeruginosa cells are killed by other bacteria. These signals trigger a response in surviving cells by turning on a pathway that controls a number of antibacterial factors. These include the production of the so-called ‘type VI secretion system’, a molecular machine that delivers a potent cocktail of antibacterial toxins directly into nearby bacteria. This process, which LeRoux et al. have named ‘P. aeruginosa response to antagonism’, or PARA for short, enables P. aeruginosa to thrive when grown with competing bacterial species. P. aeruginosa is notorious for infecting the lungs of people with the genetic disease cystic fibrosis, as well as chronic wounds often found in people with diabetes. In both cases, when P. aeruginosa is present, the numbers of other, often less harmful organisms, tend to decrease. PARA may be one reason for the success of P. aeruginosa in these multi-species infections. DOI:
    eLife Sciences 02/2015; 4. DOI:10.7554/eLife.05701 · 8.52 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The production of bacteriocins in response to worsening environmental conditions is one means of bacteria to outcompete other microorganisms. Colicins, one class of bacteriocins in Escherichia coli, are effective against closely related Enterobacteriaceae. Current research focuses on production, release and uptake of these toxins by bacteria. However, little is known about the quantitative aspects of these dynamic processes. Here, we quantitatively study expression dynamics of the Colicin E2 operon in E. coli on a single cell level using fluorescence time-lapse microscopy. DNA damage, triggering SOS response leads to the heterogeneous expression of this operon including the cea gene encoding the toxin, Colicin E2, and the cel gene coding for the induction of cell lysis and subsequent colicin release. Advancing previous whole population investigations, our time-lapse experiments reveal that at low exogenous stress levels all cells eventually respond after a given time (heterogeneous timing). This heterogeneous timing is lost at high stress levels, at which a synchronized stress response of all cells 60 min after induction via stress can be observed. We further demonstrate, that the amount of colicin released is dependent on cel (lysis) gene expression, independent of the applied exogenous stress level. A heterogeneous response in combination with heterogeneous timing can be biologically significant. It might enable a bacterial population to endure low stress levels, while at high stress levels an immediate and synchronized population wide response can give single surviving cells of the own species the chance to take over the bacterial community after the stress has ceased.
    PLoS ONE 03/2015; 10(3):e0119124. DOI:10.1371/journal.pone.0119124 · 3.53 Impact Factor

Full-text (2 Sources)

Available from
Jun 3, 2014