Sundstrom, J.B. et al. Human tissue mast cells are an inducible reservoir of persistent HIV infection. Blood 109, 5293-5300

Department of Gynecology and Obstetrics, Emory University, Atlanta, Georgia, United States
Blood (Impact Factor: 10.45). 07/2007; 109(12):5293-300. DOI: 10.1182/blood-2006-11-058438
Source: PubMed


We have proposed that, unlike other HIV-vulnerable cell lineages, progenitor mast cells (prMCs), cultured in vitro from undifferentiated bone marrow-derived CD34(+) pluripotent progenitors (PPPs), are susceptible to infection during a limited period of their ontogeny. As infected prMCs mature in culture, they lose expression of viral chemokine coreceptors necessary for viral entry and develop into long-lived, latently infected mature tissue mast cells (MCs), resistant to new infection. In vivo recruitment of prMCs to different tissue compartments occurs in response to tissue injury, growth, and remodeling or allergic inflammation, allowing populations of circulating and potentially HIV-susceptible prMCs to spread persistent infection to diverse tissue compartments. In this report, we provide in vivo evidence to confirm this model by demonstrating that HIV-infected women have both circulating prMCs and placental tissue MCs (PLMCs) that harbor inducible infectious HIV even after highly active antiretroviral therapy (HAART) during pregnancy. Furthermore, infectious virus, capable of infecting alloactivated fetal cord blood mononuclear cells (CBMCs), could be induced in isolated latently infected PLMCs after weeks in culture in vitro. These data provide the first in vivo evidence that tissue MCs, developed from infected circulating prMCs, comprise a long-lived inducible reservoir of persistent HIV in infected persons during HAART.

Download full-text


Available from: Hong Yi, Oct 01, 2015
31 Reads
  • Source
    • "In addition to a role in viral clearance and immune surveillance, recent work from several groups has also suggested a detrimental role for mast cells in viral infections. For instance, HIV has been shown to infect human mast cell progenitors, which can mature and develop as long-lived viral reservoirs during latent infection (Sundstrom et al. 2007). Moreover, Graham et al. (2013) observed that mast cells contributed to the establishment of IAV-induced inflammatory response and lung damage. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Since first described by Paul Ehrlich in 1878, mast cells have been mostly viewed as effectors of allergy. It has been only in the past two decades that mast cells have gained recognition for their involvement in other physiological and pathological processes. Mast cells have a widespread distribution and are found predominantly at the interface between the host and the external environment. Mast cell maturation, phenotype and function are a direct consequence of the local microenvironment and have a marked influence on their ability to specifically recognize and respond to various stimuli through the release of an array of biologically active mediators. These features enable mast cells to act as both first responders in harmful situations as well as to respond to changes in their environment by communicating with a variety of other cells implicated in physiological and immunological responses. Therefore, the critical role of mast cells in both innate and adaptive immunity, including immune tolerance, has gained increased prominence. Conversely, mast cell dysfunction has pointed to these cells as the main offenders in several chronic allergic/inflammatory disorders, cancer and autoimmune diseases. This review summarizes the current knowledge of mast cell function in both normal and pathological conditions with regards to their regulation, phenotype and role.
    Acta histochemica et cytochemica official journal of the Japan Society of Histochemistry and Cytochemistry 07/2014; 62(10). DOI:10.1369/0022155414545334 · 1.39 Impact Factor
  • Source
    • "RNA was prepared from untreated or Slit2N treated HIV-1 IIIB-infected cells using the QIAamp RNAeasy Mini Kit protocol (Qiagen). FL and MS HIV-1 mRNA transcript levels were determined by a modification of a protocol described [56]. qRT-PCR was performed using primers (200nM) specific for FL and for MS using 400 ng of sample RNA in a SYBR Green assay system using a Realplex Cycler (Eppendorf, Westbury, NY). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Background Slit2 is a ~ 200 kDa secreted glycoprotein that has been recently shown to regulate immune functions. However, not much is known about its role in HIV (human immunodeficiency virus)-1 pathogenesis. Results In the present study, we have shown that the N-terminal fragment of Slit2 (Slit2N) (~120 kDa) inhibits replication of both CXCR4 and CCR5-tropic HIV-1 viruses in T-cell lines and peripheral blood T-cells. Furthermore, we demonstrated inhibition of HIV-1 infection in resting CD4+ T-cells. In addition, we showed that Slit2N blocks cell-to-cell transmission of HIV-1. We have shown that Slit2N inhibits HIV-1 infection by blocking viral entry into T-cells. We also ruled out Slit2N-mediated inhibition of various other steps in the life cycle including binding, integration and viral transcription. Elucidation of the molecular mechanism revealed that Slit2N mediates its functional effects by binding to Robo1 receptor. Furthermore, we found that Slit2N inhibited Gp120-induced Robo1-actin association suggesting that Slit2N may inhibit cytoskeletal rearrangements facilitating HIV-1 entry. Studies into the mechanism of inhibition of HIV-1 revealed that Slit2N abrogated HIV-1 envelope-induced actin cytoskeletal dynamics in both T-cell lines and primary T-cells. We further showed that Slit2N specifically attenuated the HIV-1 envelope-induced signaling pathway consisting of Rac1, LIMK and cofilin that regulates actin polymerization. Conclusions Taken together, our results show that Slit2N inhibits HIV-1 replication through novel mechanisms involving modulation of cytoskeletal dynamics. Our study, thus, provides insights into the role of Slit2N in HIV-1 infection and underscores its potential in limiting viral replication in T-cells.
    Retrovirology 01/2013; 10(1):2. DOI:10.1186/1742-4690-10-2 · 4.19 Impact Factor
  • Source
    • "It has to be noted, that although most of these findings indicate a possible beneficial role for MCs in viral infection there may be circumstances in which the role of MCs could be detrimental. For example, Sundstrom et al. (2007) reported that HIV-infected human tissue MCs might comprise a long-lived inducible reservoir of persistent HIV in infected individuals. MCs co-cultured with respiratory syncytial virus (RSV)-infected A549 airway epithelial cells show degranulation and increased TNF-α secretion. "
    [Show abstract] [Hide abstract]
    ABSTRACT: In addition to their detrimental role in allergic diseases, mast cells (MCs) are well known to be important cells of the innate immune system. In the last decade, they have been shown to contribute significantly to optimal host defense against numerous pathogens including parasites, bacteria, and viruses. The contribution of MCs to the immune responses in fungal infections, however, is largely unknown. In this review, we first discuss key features of mast cell responses to pathogens in general and then summarize the current knowledge on the function of MCs in the defense against fungal pathogens. We especially focus on the potential and proven mechanisms by which MCs can detect fungal infections and on possible MC effector mechanisms in protecting from fungal infections.
    Frontiers in Immunology 06/2012; 3:146. DOI:10.3389/fimmu.2012.00146
Show more