Role of the human immunodeficiency virus type 1 envelope gene in viral fitness.

Department of Virology, Lerner Research Institute, Cleveland Clinic Foundation, OH 44195, USA.
Journal of Virology (Impact Factor: 5.08). 09/2003; 77(16):9069-73. DOI: 10.1128/JVI.77.16.9069-9073.2003
Source: PubMed

ABSTRACT A human host offers a variety of microenvironments to the infecting human immunodeficiency virus type 1 (HIV-1), resulting in various selective pressures, most of them directed against the envelope (env) gene. Therefore, it seems evident that the replicative capacity of the virus is largely related to viral entry. In this study we have used growth competition experiments and TaqMan real-time PCR detection to measure the fitness of subtype B HIV-1 primary isolates and autologous env-recombinant viruses in order to analyze the contribution of wild-type env sequences to overall HIV-1 fitness. A significant correlation was observed between fitness values obtained for wild-type HIV-1 isolates and those for the corresponding env-recombinant viruses (r = 0.93; P = 0.002). Our results suggest that the env gene, which is linked to a myriad of viral characteristics (e.g., entry into the host cell, transmission, coreceptor usage, and tropism), plays a major role in fitness of wild-type HIV-1. In addition, this new recombinant assay may be useful for measuring the contribution of HIV-1 env to fitness in viruses resistant to novel antiretroviral entry inhibitors.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The feline and human immunodeficiency viruses (FIV and HIV) target helper T cells selectively, and in doing so they induce a profound immune dysfunction. The primary determinant of HIV cell tropism is the expression pattern of the primary viral receptor CD4 and co-receptor(s), such as CXCR4 and CCR5. FIV employs a distinct strategy to target helper T cells; a high affinity interaction with CD134 (OX40) is followed by binding of the virus to its sole co-receptor, CXCR4. Recent studies have demonstrated that the way in which FIV interacts with its primary receptor, CD134, alters as infection progresses, changing the cell tropism of the virus. This review examines the contribution of the virus-receptor interaction to replication in vivo as well as the significance of these findings to the development of vaccines and therapeutics.
    Current opinion in virology. 08/2013;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: HIV-1 envelope (Env) uses CD4 and a coreceptor (CCR5 and/or CXCR4) for viral entry. The efficiency of receptor/coreceptor mediated entry has important implications for HIV pathogenesis and transmission. The advent of CCR5 inhibitors in clinical use also underscores the need for quantitative and predictive tools that can guide therapeutic management. Historically, measuring the efficiency of CD4/CCR5 mediated HIV entry has relied on surrogate and relatively slow throughput assays that cannot adequately capture the full spectrum of Env phenotypes. In this review, we discuss the details of the Affinofile receptor affinity profiling system that has provided a quantitative and higher throughput method to characterize viral entry efficiency as a function of CD4 and CCR5 expression levels. We will then review how the Affinofile system has been used to reveal the distinct pathophysiological properties associated with Env entry phenotypes and discuss potential shortcomings of the current system.
    Virology 01/2013; 435(1):81-91. · 3.35 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Following long-term infection with virus derived from the pathogenic GL8 molecular clone of feline immunodeficiency virus (FIV), a range of viral variants emerged with distinct modes of interaction with the viral receptors CD134 and CXCR4, and sensitivities to neutralizing antibodies. In order to assess whether this viral diversity would be maintained following subsequent transmission, a synthetic quasispecies was reconstituted comprising molecular clones bearing envs from six viral variants and its replicative capacity compared in vivo with a clonal preparation of the parent virus. Infection with either clonal (Group 1) or diverse (Group 2) challenge viruses, resulted in a reduction in CD4+ lymphocytes and an increase in CD8+ lymphocytes. Proviral loads were similar in both study groups, peaking by 10 weeks post-infection, a higher plateau (set-point) being achieved and maintained in study Group 1. Marked differences in the ability of individual viral variants to replicate were noted in Group 2; those most similar to GL8 achieved higher viral loads while variants such as the chimaeras bearing the B14 and B28 Envs grew less well. The defective replication of these variants was not due to suppression by the humoral immune response as virus neutralising antibodies were not elicited within the study period. Similarly, although potent cellular immune responses were detected against determinants in Env, no qualitative differences were revealed between animals infected with either the clonal or the diverse inocula. However, in vitro studies indicated that the reduced replicative capacity of variants B14 and B28 in vivo was associated with altered interactions between the viruses and the viral receptor and co-receptor. The data suggest that viral variants with GL8-like characteristics have an early, replicative advantage and should provide the focus for future vaccine development.
    PLoS ONE 01/2013; 8(1):e54871. · 3.73 Impact Factor


Available from
May 23, 2014