Atomic bomb induced 152Eu: reconciliation of discrepancy between measurements and calculation.

Low Level Radioactivity Laboratory, Institute of Nature and Environmental Technology, Kanazawa University, Wake, Tatsunokuchi-machi, Ishikawa 923-1224, Japan.
Health Physics (Impact Factor: 0.77). 05/2007; 92(4):366-77. DOI: 10.1097/01.HP.0000251246.58759.2f
Source: PubMed

ABSTRACT In order to resolve the discrepancy between the measured and calculated 152Eu activity induced by the atomic bomb at Hiroshima, extremely low background gamma-ray spectrometry was performed for 17 granite samples collected from 134 m to more than 3 km from the hypocenter. Measurements agreed well with theoretical calculations based on DS02 up to 1.4 km from hypocenter.

  • [Show abstract] [Hide abstract]
    ABSTRACT: In the process of developing a new dosimetry system for atomic bomb survivors in Hiroshima and Nagasaki (DS02), an intercomparison study between (152)Eu and (36)Cl measurements was proposed, to reconcile the discrepancy previously observed in the Hiroshima data between measurements and calculations of thermal neutron activation products. Nine granite samples, exposed to the atomic-bomb radiation in Hiroshima within 1,200 m of the hypocenter, as well as mixed standard solutions containing known amounts of europium and chlorine that were neutron-activated by a (252)Cf source, were used for the intercomparison. Gamma-ray spectrometry for (152)Eu was carried out with ultra low-background Ge detectors at the Ogoya Underground Laboratory, Kanazawa University, while three laboratories participated in the (36)Cl measurement using accelerator mass spectrometry (AMS): The Technical University of Munich, Germany, the Lawrence Livermore National Laboratory, USA and the University of Tsukuba, Japan. Measured values for the mixed standard solutions showed good agreement among the participant laboratories. They also agreed well with activation calculations, using the neutron fluences monitored during the (252)Cf irradiation, and the corresponding activation cross-sections taken from the JENDL-3.3 library. The measured-to-calculated ratios obtained were 1.02 for (152)Eu and 0.91-1.02 for (36)Cl, respectively. Similarly, the results of the granite intercomparison indicated good agreement with the DS02 calculation for these samples. An average measured-to-calculated ratio of 0.98 was obtained for all granite intercomparison measurements. The so-called neutron discrepancy that was previously observed and that which included increasing measured-to-calculated ratios for thermal neutron activation products for increasing distances beyond 1,000 m from the hypocenter was not seen in the results of the intercomparison study. The previously claimed discrepancy could be explained by insufficient understanding of the measured data.
    Biophysik 08/2008; 47(3):313-22. · 1.58 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To study discrepancies in retrospective Hiroshima dosimetry, the specific activity of (60)Co in 16 steel samples from Hiroshima was measured using gamma-ray spectrometry in underground laboratories. There is general agreement between these new activity measurements and the specific activities derived from previously calculated dose values on the one hand and former measurements of samples gathered at distances less than 1,000 m from the center of the explosion (< 1,000 m slant range) on the other. It was found that activities at long range (> 1,300 m slant range) were mainly cosmogenically induced. Furthermore, at long range, these results are in disagreement with older measurements whose specific activity values were 10 to 100 times higher than predicted by computer model calculations in DS86 and DS02. As a consequence, the previously reported discrepancy is not confirmed.
    Health physics 04/2012; 102(4):400-9. · 0.92 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: As a result of joint efforts by Japanese, US and German scientists, the Dosimetry System 2002 (DS02) was developed as a new dosimetry system, to evaluate individual radiation dose to atomic bomb survivors in Hiroshima and Nagasaki. Although the atomic bomb radiation consisted of initial radiation and residual radiation, only initial radiation was reevaluated in DS02 because, for most survivors in the life span study group, the residual dose was negligible compared to the initial dose. It was reported, however, that there were individuals who entered the city at the early stage after the explosion and experienced hemorrhage, diarrhea, etc., which were symptoms of acute radiation syndrome. In this study, external exposure due to radionuclides induced in soil by atomic bomb neutrons was reevaluated based on DS02 calculations, as a function of both the distance from the hypocenters and the elapsed time after the explosions. As a result, exposure rates of 6 and 4 Gy h(-1) were estimated at the hypocenter at 1 min after the explosion in Hiroshima and Nagasaki, respectively. These exposure rates decreased rapidly by a factor of 1,000 1 day later, and by a factor of 1 million 1 week later. Maximum cumulative exposure from the time of explosion was 1.2 and 0.6 Gy at the hypocenters in Hiroshima and Nagasaki, respectively. Induced radiation decreased also with distance from the hypocenters, by a factor of about 10 at 500 m and a factor of three to four hundreds at 1,000 m. Consequently, a significant exposure due to induced radiation is considered feasible to those who entered the area closer to a distance of 1,000 m from the hypocenters, within one week after the bombing.
    Biophysik 08/2008; 47(3):331-6. · 1.58 Impact Factor