Article

Disruption of diacylglycerol kinase delta (DGKD) associated with seizures in humans and mice.

Department of Obstetrics, Gynecology, and Reproductive Biology, Brigham and Women's Hospital and Harvard Medical School, Boston, MA 02115, USA.
The American Journal of Human Genetics (Impact Factor: 11.2). 05/2007; 80(4):792-9. DOI: 10.1086/513019
Source: PubMed

ABSTRACT We report a female patient with a de novo balanced translocation, 46,X,t(X;2)(p11.2;q37)dn, who exhibits seizures, capillary abnormality, developmental delay, infantile hypotonia, and obesity. The 2q37 breakpoint observed in association with the seizure phenotype is of particular interest, because it lies near loci implicated in epilepsy in humans and mice. Fluorescence in situ hybridization mapping of the translocation breakpoints showed that no known genes are disrupted at Xp11.2, whereas diacylglycerol kinase delta (DGKD) is disrupted at 2q37. Expression studies in Drosophila and mouse suggest that DGKD is involved in central nervous system development and function. Electroencephalographic assessment of Dgkd mutant mice revealed abnormal epileptic discharges and electrographic seizures in three of six homozygotes. These findings implicate DGKD disruption by the t(X;2)(p11.2;q37)dn in the observed phenotype and support a more general role for DGKD in the etiology of seizures.

0 Bookmarks
 · 
120 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Given the well-established roles of diacylglycerol (DAG) and phosphatidic acid (PtdOH) in a variety of signaling cascades, it is not surprising that there is an increasing interest in understanding their physiological roles and mechanisms that regulate their cellular levels. One class of enzymes capable of coordinately regulating the levels of these two lipids is the diacylglycerol kinases (DGKs). These enzymes catalyze the transfer of the γ-phosphate of ATP to the hydroxyl group of DAG, which generates PtdOH while reducing DAG. As these enzymes reciprocally modulate the relative levels of these two signaling lipids, it is essential to understand the regulation and roles of these enzymes in various tissues. One system where these enzymes play important roles is the nervous system. Of the ten mammalian DGKs, eight of them are readily detected in the mammalian central nervous system (CNS): DGK-α, DGK-β, DGK-γ, DGK-η, DGK-ζ, DGK-ι, DGK-ε, and DGK-θ. Despite the increasing interest in DGKs, little is known about their regulation. We have focused some attention on understanding the enzymology and regulation of one of these DGK isoforms, DGK-θ. We recently showed that DGK-θ is regulated by an accessory protein containing polybasic regions. We now report that this accessory protein is required for the previously reported broadening of the pH profile observed in cell lysates in response to phosphatidylserine (PtdSer). Our data further reveal DGK-θ is regulated by magnesium and zinc, and sensitive to the known DGK inhibitor R599022. These data outline new parameters involved in regulating DGK-θ.
    Advances in biological regulation. 09/2012;
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Diacylglycerol kinase (DGK) is a lipid kinase converting diacylglycerol to phosphatidic acid, and regulates many enzymes including protein kinase C, phosphatidylinositol 4-phosphate 5-kinase, and mTOR. To date, ten mammalian DGK subtypes have been cloned and divided into five groups, and they show subtype-specific tissue distribution. Therefore, each DGK subtype is thought to be involved in respective cellular responses by regulating balance of the two lipid messengers, diacylglycerol and phosphatidic acid. Indeed, the recent researches using DGK knockout mice have clearly demonstrated the importance of DGK in the immune system and its pathophysiological roles in heart and insulin resistance in diabetes. Especially, most subtypes show high expression in brain with subtype specific regional distribution, suggesting that each subtype has important and unique functions in brain. Recently, neuronal functions of some DGK subtypes have accumulated. Here, we introduce DGKs with their structural motifs, summarize the enzymatic properties and neuronal functions, and discuss the possibility of DGKs as a therapeutic target of the neuronal diseases.
    Journal of Biomedical Science 04/2014; 21(1):28. · 2.46 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: SUMMARY Diacylglycerol kinases are important mediators of lipid signaling cascades and insight into their regulation is of increasing interest. Using purified DGK-θ we show that this isoform is subject to dual regulation, and that the previously characterized stimulation by acidic phospholipids is dependent on the presence of a positively charged protein or peptide. Polybasic cofactors lowered the KM for diacylglycerol at the membrane surface (KM(surf)), and worked synergistically with acidic phospholipids to increase activity 10 to 30 fold, suggesting that the purified enzyme is autoinhibited. Vesicle pull-down studies showed that acidic phospholipids recruit polybasic cofactors to the vesicle surface, but have little effect on the membrane association of DGK-θ, suggesting that a triad of enzyme, acidic lipid and basic protein are necessary for interfacial activity. Importantly, these data demonstrate that the interfacial association and catalytic activity of DGK-θ are independently regulated. Finally, we show that DGK-θ directly interacts with, and is activated by, basic proteins such as histone H1 and tau with nM affinity, underscoring the potential role of polybasic proteins as cellular activators of this enzyme. We propose a model wherein DGK-θ is autoinhibited, with release of inhibition occurring through interactions with protein and lipid cofactors.
    Journal of Biological Chemistry 10/2012; · 4.65 Impact Factor

Full-text (2 Sources)

Download
27 Downloads
Available from
May 20, 2014