Influence of semicrystalline order on the second-harmonic generation efficiency in the anisotropic bands of myocytes.

University of Toronto at Mississauga, Canada.
Applied Optics (Impact Factor: 1.69). 05/2007; 46(10):1852-9.
Source: PubMed

ABSTRACT The influence of semicrystalline order on the second-harmonic generation (SHG) efficiency in the anisotropic bands of Drosophila melanogaster sarcomeres from larval and adult muscle has been investigated. Differences in the semicrystalline order were obtained by using wild-type and mutant strains containing different amounts of headless myosin. The reduction in semicrystalline order without altering the chemical composition of myofibrils was achieved by observing highly stretched sarcomeres and by inducing a loss of viability in myocytes. In all cases the reduction of semicrystalline order in anisotropic bands of myocytes resulted in a substantial decrease in SHG. Second-harmonic imaging during periodic contractions of myocytes revealed higher intensities when sarcomeres were in the relaxed state compared with the contracted state. This study demonstrates that an ordered semicrystalline arrangement of anisotropic bands plays a determining role in the efficiency of SHG in myocytes.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Biological imaging based on light microscopy comes at the core of the methods that let us understanding morphology and its dynamics in synergy to the spatiotemporal distribution of cellular and molecular activities as the organism develops and becomes functional. Non-linear optical tools and superesolution methodologies are under constant development and their applications to live imaging of whole organisms keep improving as we speak. Genetically coded biosensors, multicolor clonal methods and optogenetics in different organisms and, in particular, in Drosophila follow equivalent paths. We anticipate a brilliant future for live imaging providing the roots for the holistic understanding, rather than for individual parts, of development and function at the whole-organism level.
    Methods 05/2014; · 3.22 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We demonstrate a noninvasive optical microscopy technique based on polarization-dependent second harmonic generation for determining the crystal lattice structure and microscopic heterogeneities within individual nanostructures. Differentiation between periodically twinned and wurtzite ZnSe nanowires (NWs) was demonstrated, and measurement of the cubic lattice rotation orientation around the NW axis was determined within 1° accuracy. Zinc blende NWs were differentiated from wurtzite. The technique can be used for quality inspection and optimization of growth conditions for nanostructures.
    Nanotechnology 11/2014; 25(50):505703. · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Nonlinear optical microscopy was used to image the localization of astaxanthin accumulation in the green alga, Haematococcus pluvialis. Polarization-in, polarization-out (PIPO) second harmonic generation (SHG) and third harmonic generation (THG) microscopy was applied to study the crystalline organization of astaxanthin molecules in light-stressed H. pluvialis in vivo. Since astaxanthin readily forms H- and J-aggregates in aqueous solutions, PIPO THG studies of astaxanthin aggregates contained in red aplanospores were compared to PIPO THG of in vitro self-assembled H- and J-aggregates of astaxanthin. The PIPO THG data clearly showed an isotropic organization of astaxanthin in red aplanospores of H. pluvialis. This is in contrast to the highly anisotropic organization of astaxanthin in synthetic H- and J-aggregates, which showed to be uniaxial. Since carotenoids in vitro preferentially form H- and J-aggregates, but in vivo form a randomly organized structure, this implies that astaxanthin undergoes a different way of packing in biological organisms, which is either due to the unique physical environment of the alga or is controlled enzymatically.
    PLoS ONE 09/2014; 9(9):e107804. · 3.53 Impact Factor

Full-text (2 Sources)

Available from
May 23, 2014