Article

Synthesis of a new class of druglike angiotensin II C-terminal mimics with affinity for the AT2 receptor.

Department of Medicinal Chemistry, Division of Organic Pharmaceutical Chemistry, BMC, Uppsala University, P.O. Box 574, SE-751 23 Uppsala, Sweden.
Journal of Medicinal Chemistry (Impact Factor: 5.48). 05/2007; 50(7):1711-5. DOI: 10.1021/jm0613469
Source: PubMed

ABSTRACT Four tripeptides corresponding to the C-terminal region of angiotensin II were synthesized. One of these peptides (Ac-His-Pro-Ile) showed moderate binding affinity for the AT2 receptor. Two aromatic histidine-related scaffolds were synthesized and introduced in the tripeptides to give eight new peptidomimetic structures. Three of the new peptide-derived druglike molecules exhibited selective, nanomolar affinity for the AT2 receptor. These ligands may become lead compounds in the future development of novel classes of selective AT2 receptor agonists.

0 Bookmarks
 · 
131 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Sixteen new C-terminally modified analogues of 2, a previously described potent and selective AT2R ligand, were designed, synthesized and evaluated for their affinity to the AT2R receptor. The introduction of large, hydrophobic substituents was shown to be beneficial and the most active compound (17, Ki = 8.5 μM) was over 12-times more potent than the lead compound 2.
    Bioorganic & medicinal chemistry letters 01/2013; · 2.65 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Angiotensin II (Ang II) is the main active product of the renin-angiotensin system (RAS), mediating its action via two major receptors, namely, the Ang II type 1 (AT(1)) receptor and the type 2 (AT(2)) receptor. Recent results also implicate several other members of the renin-angiotensin system in various aspects of brain functions. The first aim of this paper is to summarize the current state of knowledge regarding the properties and signaling of the AT(2) receptor, its expression in the brain, and its well-established effects. Secondly, we will highlight the potential role of the AT(2) receptor in cognitive function, neurological disorders and in the regulation of appetite and the possible link with development of metabolic disorders. The potential utility of novel nonpeptide selective AT(2) receptor ligands in clarifying potential roles of this receptor in physiology will also be discussed. If confirmed, these new pharmacological tools should help to improve impaired cognitive performance, not only through its action on brain microcirculation and inflammation, but also through more specific effects on neurons. However, the overall physiological relevance of the AT(2) receptor in the brain must also consider the Ang IV/AT(4) receptor.
    International journal of hypertension. 01/2012; 2012:351758.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: A novel series of ligands for the recombinant human AT2 receptor has been synthesized utilizing a fast and efficient palladium-catalyzed procedure for aminocarbonylation as the key reaction. Molybdenum hexacarbonyl [Mo(CO)6] was employed as the carbon monoxide source, and controlled microwave heating was applied. The prepared N-aryl isoleucine derivatives, encompassing a variety of amide groups attached to the aromatic system, exhibit binding affinities at best with K i values in the low micromolar range versus the recombinant human AT2 receptor. Some of the new nonpeptidic isoleucine derivatives may serve as starting points for further structural optimization. The presented data emphasize the importance of using human receptors in drug discovery programs.
    ChemistryOpen. 04/2014; 3(2):65-75.