Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles.

School of Applied and Engineering Physics and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 03/2007; 104(9):3165-70. DOI: 10.1073/pnas.0611357104
Source: PubMed

ABSTRACT The membrane raft hypothesis postulates the existence of lipid bilayer membrane heterogeneities, or domains, supposed to be important for cellular function, including lateral sorting, signaling, and trafficking. Characterization of membrane lipid heterogeneities in live cells has been challenging in part because inhomogeneity has not usually been definable by optical microscopy. Model membrane systems, including giant unilamellar vesicles, allow optical fluorescence discrimination of coexisting lipid phase types, but thus far have focused on coexisting optically resolvable fluid phases in simple lipid mixtures. Here we demonstrate that giant plasma membrane vesicles (GPMVs) or blebs formed from the plasma membranes of cultured mammalian cells can also segregate into micrometer-scale fluid phase domains. Phase segregation temperatures are widely spread, with the vast majority of GPMVs found to form optically resolvable domains only at temperatures below approximately 25 degrees C. At 37 degrees C, these GPMV membranes are almost exclusively optically homogenous. At room temperature, we find diagnostic lipid phase fluorophore partitioning preferences in GPMVs analogous to the partitioning behavior now established in model membrane systems with liquid-ordered and liquid-disordered fluid phase coexistence. We image these GPMVs for direct visual characterization of protein partitioning between coexisting liquid-ordered-like and liquid-disordered-like membrane phases in the absence of detergent perturbation. For example, we find that the transmembrane IgE receptor FcepsilonRI preferentially segregates into liquid-disordered-like phases, and we report the partitioning of additional well known membrane associated proteins. Thus, GPMVs now provide an effective approach to characterize biological membrane heterogeneities.

  • Source
    01/2012: pages 210-245; Oxford: Academic Press.
  • [Show abstract] [Hide abstract]
    ABSTRACT: A search for organizing principles underlying molecular patterning at the cell surface and its regulation over different scales is necessary. This is important for understanding how the cell builds membrane bound organelles that emanate from it and for how the cell interacts with its physical and chemical milieu. This requires a broad framework to rationalize the mass of accumulated data about the spatial localization and dynamics of its constituents, and their physical and chemical environment. Lateral heterogeneities in the organization of membrane components of a living cell appear to be a hallmark of how a cell addresses sorting and signaling functions. Here we explore two classes of mechanisms of segregation of membrane components in the plasma membrane. We suggest that viewing the membrane as a passive, thermally equilibrated system is unlikely to provide an adequate framework to understand the mechanisms of membrane component segregation in vivo. Instead the surface of living cells behaves as an active membrane composite.
    Current Opinion in Cell Biology 06/2014; 29C:126-132. · 8.74 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Despite the extensive research in the field of CPPs` cell entry the exact mechanisms underlying their cellular uptake and the role of involved cell surface molecules in the internalization process has remained controversial. The present study focused on the interactions between CPPs and plasma membrane compounds using giant plasma membrane vesicles (GPMVs). GPMVs have shown to be a suitable model to study the translocation of CPPs across the plasma membrane in conditions lacking endocytosis. Our results show that higher cholesterol content and tighter packing of membrane predominantly reduce the accumulation of transportan, TP10 and model amphipathic peptide (MAP) in vesicles, indicating that the internalization of CPPs takes place preferentially via the more dynamic membrane regions. The partial digestion of membrane proteins from GPMVs` surface, on the other hand, drastically reduced the accumulation of nona-arginine and Tat peptide into vesicles, suggesting that proteins play a crucial role in the uptake of arginine-rich CPPs.
    Journal of Controlled Release 07/2014; · 7.26 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014