Large-scale fluid/fluid phase separation of proteins and lipids in giant plasma membrane vesicles.

School of Applied and Engineering Physics and Department of Chemistry and Chemical Biology, Cornell University, Ithaca, NY 14853, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 03/2007; 104(9):3165-70. DOI: 10.1073/pnas.0611357104
Source: PubMed

ABSTRACT The membrane raft hypothesis postulates the existence of lipid bilayer membrane heterogeneities, or domains, supposed to be important for cellular function, including lateral sorting, signaling, and trafficking. Characterization of membrane lipid heterogeneities in live cells has been challenging in part because inhomogeneity has not usually been definable by optical microscopy. Model membrane systems, including giant unilamellar vesicles, allow optical fluorescence discrimination of coexisting lipid phase types, but thus far have focused on coexisting optically resolvable fluid phases in simple lipid mixtures. Here we demonstrate that giant plasma membrane vesicles (GPMVs) or blebs formed from the plasma membranes of cultured mammalian cells can also segregate into micrometer-scale fluid phase domains. Phase segregation temperatures are widely spread, with the vast majority of GPMVs found to form optically resolvable domains only at temperatures below approximately 25 degrees C. At 37 degrees C, these GPMV membranes are almost exclusively optically homogenous. At room temperature, we find diagnostic lipid phase fluorophore partitioning preferences in GPMVs analogous to the partitioning behavior now established in model membrane systems with liquid-ordered and liquid-disordered fluid phase coexistence. We image these GPMVs for direct visual characterization of protein partitioning between coexisting liquid-ordered-like and liquid-disordered-like membrane phases in the absence of detergent perturbation. For example, we find that the transmembrane IgE receptor FcepsilonRI preferentially segregates into liquid-disordered-like phases, and we report the partitioning of additional well known membrane associated proteins. Thus, GPMVs now provide an effective approach to characterize biological membrane heterogeneities.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Membrane pearling in live cells is observed when the plasma membrane is depleted of its support, the cortical actin network. Upon efficient depolymerization of actin, pearls of variable size are formed, which are connected by nanotubes of ∼40 nm diameter. We show that formation of the membrane tubes and their transition into chains of pearls do not require external tension, and that they neither depend on microtubule-based molecular motors nor pressure generated by myosin-II. Pearling thus differs from blebbing. The pearling state is stable as long as actin is prevented from polymerizing. When polymerization is restored, the pearls are retracted into the cell, indicating continuity of the membrane. Our data suggest that the alternation of pearls and strings is an energetically favored state of the unsupported plasma membrane, and that one of the functions of the actin cortex is to prevent the membrane from spontaneously assuming this configuration.
    Biophysical Journal 03/2014; 106(5):1079-1091. · 3.67 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The influenza viral membrane protein hemagglutinin (HA) is required at high concentrations on virion and host-cell membranes for infectivity. Because the role of actin in membrane organization is not completely understood, we quantified the relationship between HA and host-cell actin at the nanoscale. Results obtained using superresolution fluorescence photoactivation localization microscopy (FPALM) in nonpolarized cells show that HA clusters colocalize with actin-rich membrane regions (ARMRs). Individual molecular trajectories in live cells indicate restricted HA mobility in ARMRs, and actin disruption caused specific changes to HA clustering. Surprisingly, the actin-binding protein cofilin was excluded from some regions within several hundred nanometers of HA clusters, suggesting that HA clusters or adjacent proteins within the same clusters influence local actin structure. Thus, with the use of imaging, we demonstrate a dynamic relationship between glycoprotein membrane organization and the actin cytoskeleton at the nanoscale.
    Biophysical Journal 05/2013; 104(10):2182-2192. · 3.67 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: There is growing recognition that lipid heterogeneities in cellular membranes play an important role in the distribution and functionality of membrane proteins. However, the detection and characterization of such heterogeneities at the cellular level remains challenging. Here we report on the poorly understood relationship between lipid bilayer asymmetry and membrane protein sequestering in raft-mimicking model membrane mixtures using a powerful experimental platform comprised of confocal spectroscopy XY-scan and photon-counting histogram analyses. This experimental approach is utilized to probe the domain-specific sequestering and oligomerization state of αvβ3 and α5β1 integrins in bilayers, which contain coexisting liquid-disordered/liquid-ordered (ld/lo) phase regions exclusively in the top leaflet of the bilayer (bottom leaflet contains ld phase). Comparison with previously reported integrin sequestering data in bilayer-spanning lo-ld phase separations demonstrates that bilayer asymmetry has a profound influence on αvβ3 and α5β1 sequestering behavior. For example, both integrins sequester preferentially to the lo phase in asymmetric bilayers, but to the ld phase in their symmetric counterparts. Furthermore, our data show that bilayer asymmetry significantly influences the role of native ligands in integrin sequestering.
    Biophysical Journal 05/2013; 104(10):2212-2221. · 3.67 Impact Factor

Full-text (2 Sources)

Available from
May 30, 2014