Article

Usherin is required for maintenance of retinal photoreceptors and normal development of cochlear hair cells.

Berman-Gund Laboratory for the Study of Retinal Degenerations and Eaton-Peabody Laboratory, Harvard Medical School, Massachusetts Eye and Ear Infirmary, 243 Charles Street, Boston, MA 02114, USA.
Proceedings of the National Academy of Sciences (Impact Factor: 9.81). 04/2007; 104(11):4413-8. DOI: 10.1073/pnas.0610950104
Source: PubMed

ABSTRACT Usher syndrome type IIA (USH2A), characterized by progressive photoreceptor degeneration and congenital moderate hearing loss, is the most common subtype of Usher syndrome. In this article, we show that the USH2A protein, also known as usherin, is an exceptionally large ( approximately 600-kDa) matrix protein expressed specifically in retinal photoreceptors and developing cochlear hair cells. In mammalian photoreceptors, usherin is localized to a spatially restricted membrane microdomain at the apical inner segment recess that wraps around the connecting cilia, corresponding to the periciliary ridge complex described for amphibian photoreceptors. In sensory hair cells of the cochlea, it is associated transiently with the hair bundles during postnatal development. Targeted disruption of the Ush2a gene in mice leads to progressive photoreceptor degeneration and a moderate but nonprogressive hearing impairment, mimicking the visual and hearing deficits in USH2A patients. These data suggest that usherin is required for the long-term maintenance of retinal photoreceptors and for the development of cochlear hair cells. We propose a model in which usherin in photoreceptors is tethered via its C terminus to the plasma membrane and its large extracellular domain projecting into the periciliary matrix, where they may interact with the connecting cilium to fulfill important structural or signaling roles.

Download full-text

Full-text

Available from: Keith N Darrow, Jun 29, 2015
0 Followers
 · 
117 Views
  • Source
    Hearing Loss, 03/2012; , ISBN: 978-953-51-0366-0
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The primary cilium is a cellular antenna that detects and transmits chemical and mechanical cues in the environment through receptors and downstream signal proteins enriched along the ciliary membrane. While it is known that ciliary membrane proteins enter the cilium by way of vesicular and intraflagellar transport, less is known about how ciliary membrane proteins are retained in, and how apical membrane proteins are excluded from the cilium. Here, we review evidence for a membrane diffusion barrier at the base of the primary cilium, and highlight the recent finding of a septin cytoskeleton diffusion barrier. We also discuss candidate ciliopathy genes that may be involved in formation of the barrier, and the role of a diffusion barrier as a common mechanism for compartmentalizing membranes and lipid domains.
    Cytoskeleton 06/2011; 68(6):313-24. DOI:10.1002/cm.20514 · 3.01 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The LEW/Ztm-ci2 rat is an animal model for syndromal deafness that arose from a spontaneous mutation. Homozygous animals show locomotor abnormalities like lateralized circling behavior. Additionally, an impaired vision can be observed in some animals through behavioral studies. Syndromal deafness as well as retinal degeneration are features of the Usher syndrome in humans. In the present study, the mutation was identified as a base substitution (T->C) in exon 56 of Myo15, leading to an amino acid exchange from leucine (Leu) to proline (Pro) within the carboxy-terminal MyTH4 domain in the proteins' tail region. Myo15 mRNA was expressed in the retina as demonstrated for the first time with the help of in-situ hybridization and PCR. To characterize the visual phenotype, rats were examined by scotopic and photopic electroretinography and, additionally, histological analyses of the retinas were conducted. The complete loss of sight was detected along with a severe degeneration of photoreceptor cells. Interestingly, the manifestation of the disease does not solely depend on the mutation, but also on environmental factors. Since the LEW/Ztm-ci2 rat features the entire range of symptoms of the human Usher syndrome we think that this strain is an appropriate model for this disease. Our findings display that mutations in binding domains of myosin XV do not only cause non-syndromic hearing loss but can also lead to syndromic disorders including retinal dysfunction.
    PLoS ONE 03/2011; 6(3):e15669. DOI:10.1371/journal.pone.0015669 · 3.53 Impact Factor