Matrix metalloproteinase-9 regulates TNF-alpha and FasL expression in neuronal, glial cells and its absence extends life in a transgenic mouse model of amyotrophic lateral sclerosis

Department of Neurology and Neuroscience, Weill Medical College of Cornell University, 525 East 68th Street, New York, NY 10021, USA. <>
Experimental Neurology (Impact Factor: 4.62). 06/2007; 205(1):74-81. DOI: 10.1016/j.expneurol.2007.01.036
Source: PubMed

ABSTRACT Whether increased levels of matrix metalloproteinases (MMPs) correspond to a role in the pathogenesis of amyotrophic lateral sclerosis (ALS) needs to be determined and it is actively being pursued. Here we present evidence suggesting that MMP-9 contributes to the motor neuron cell death in ALS. We examined the role of MMP-9 in a mouse model of familial ALS and found that lack of MMP-9 increased survival (31%) in G93A SOD1 mice. Also, MMP-9 deficiency in G93A mice significantly attenuated neuronal loss, and reduced neuronal TNF-alpha and FasL immunoreactivities in the lumbar spinal cord. These findings suggest that MMP-9 is an important player in the pathogenesis of ALS. Our data suggest that the mechanism for MMP-9 neurotoxicity in ALS may be by upregulating neuronal TNF-alpha and FasL expression and activation. This study provides new mechanism and suggests that MMP inhibitors may offer a new therapeutic strategy for ALS.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Matrix metalloproteinases (MMPs) are zinc-dependent endopeptidases, responsible for the integrity of the basement membrane (BM) via degradation of extracellular matrix and BM components. These enzymes are presented in central and peripheral nervous system. They are considered to be involved in the pathogenesis of several neurological diseases, including amyotrophic lateral sclerosis (ALS). ALS is a motor neuron disease, leading to muscle atrophy, paralysis and death within 3-5 years from diagnosis. Currently, there is no treatment that can substantially prolong life of ALS patients. Despite the fact that MMPs are not specific for ALS, there is also strong evidence that these enzymes are involved in the pathology of ALS. MMPs are able to exert direct neurotoxic effects, or may cause cell death by degrading matrix proteins. The objective of this paper is to provide an updated and comprehensive review concerning the role of MMPs and their tissue inhibitors (TIMPs) in the pathology of ALS with an emphasis on the significance of MMP-2 and MMP-9 as well as their tissue inhibitors as potential biomarkers of ALS. Numerous hypotheses have been proposed regarding the role of selected MMPs and TIMPs in ALS pathogenesis. Moreover, selective MMPs' inhibitors might be potential targets for therapeutic strategies for patients with ALS. However, future investigations are necessary before some of those non-specific for ALS enzymes could finally be used as biomarkers of this disease.
    Journal of Neural Transmission 07/2014; DOI:10.1007/s00702-014-1205-3 · 2.87 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Triggers of brain inflammation in pneumococcal meningitis are unknown. TNF-α and IL-1β were upregulated (real time PCR and in situ hybridization) in neurons and astrocytes time-dependently and maximally in the hippocampus during murine pneumococcal meningitis. Upregulation of TNF-α and IL-1β mRNA in the brain parenchyma was independent of cerebrospinal fluid leukocytosis, pneumococcal pneumolysin and H2O2, but it was potently induced by pneumococcal cell wall (PCW) fragments. Brain TNF-α mRNA was downregulated by a matrix metalloproteinases inhibitor. PCW fragments were located in brain parenchyma. In conclusion, PCW fragments and matrix metalloproteinases trigger cytokine induction in the brain parenchyma during pneumococcal meningitis.
    Journal of Neuroimmunology 09/2014; DOI:10.1016/j.jneuroim.2014.08.625 · 2.79 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Matrix metalloproteinase-1 (MMP-1), a member of the matrix metalloproteinases family, plays an integral role in extracellular matrix degradation and has been reportedly involved in the regulation of the brain or spinal cord traumatic neurovascular remodeling. Although the critical involvement of MMP-1 in the metastasis of tumors has been extensively documented, the role of MMP-1 in the pathology of neurological diseases remains largely elusive. In the present study, we established an adult rat spinal cord injury (SCI) model and investigated a potential role of MMP-1 in the pathological process of SCI. Using Western blot analysis, we identified notable expression change of MMP-1 after SCI. Immunohistochemistry showed that MMP-1 was distributed widely in rat spinal cord. Double immunofluorescence staining revealed that MMP-1 immunoreactivity was predominantly increased in neurons and astrocytes following SCI. Moreover, after injury, colocalization of MMP-1/active caspase-3 in neurons (NeuN-positive), and colocalization of MMP-1/PCNA in astrocytes (GFAP-positive) were clearly observed. We also examined the protein expression of PCNA, active caspase-3, Bcl-2, and Bax and found that the expression of the proteins was closely correlated with that of MMP-1. Taken together, our findings indicate that MMP-1 might play an important role in the regulation of neuronal apoptosis and astrocyte proliferation after SCI.
    Cellular and Molecular Neurobiology 07/2014; 34(8). DOI:10.1007/s10571-014-0090-5 · 2.20 Impact Factor