How much can a T-cell antigen receptor adapt to structurally distinct antigenic peptides?

Centre d'Immunologie de Marseille-Luminy, Université de la Méditerrannée, 13288 Marseille Cedex 09, France.
The EMBO Journal (Impact Factor: 10.75). 05/2007; 26(7):1972-83. DOI: 10.1038/sj.emboj.7601605
Source: PubMed

ABSTRACT Binding degeneracy is thought to constitute a fundamental property of the T-cell antigen receptor (TCR), yet its structural basis is poorly understood. We determined the crystal structure of a complex involving the BM3.3 TCR and a peptide (pBM8) bound to the H-2K(bm8) major histocompatibility complex (MHC) molecule, and compared it with the structures of the BM3.3 TCR bound to H-2K(b) molecules loaded with two peptides that had a minimal level of primary sequence identity with pBM8. Our findings provide a refined structural view of the basis of BM3.3 TCR cross-reactivity and a structural explanation for the long-standing paradox that a TCR antigen-binding site can be both specific and degenerate. We also measured the thermodynamic features and biological penalties that incurred during cross-recognition. Our data illustrate the difficulty for a given TCR in adapting to distinct peptide-MHC surfaces while still maintaining affinities that result in functional in vivo responses. Therefore, when induction of protective effector T cells is used as the ultimate criteria for adaptive immunity, TCRs are probably much less degenerate than initially assumed.

Download full-text


Available from: Nathalie Auphan-Anezin, Jul 01, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T cell receptor (TCR) engagement of peptide-major histocompatibility complex (pMHC) is essential to adaptive immunity, but it is unknown whether TCR signaling responses are influenced by the binding topology of the TCR-peptide-MHC complex. We developed yeast-displayed pMHC libraries that enabled us to identify new peptide sequences reactive with a single TCR. Structural analysis showed that four peptides bound to the TCR with distinct 3D and 2D affinities using entirely different binding chemistries. Three of the peptides that shared a common docking mode, where key TCR-MHC germline interactions are preserved, induced TCR signaling. The fourth peptide failed to induce signaling and was recognized in a substantially different TCR-MHC binding mode that apparently exceeded geometric tolerances compatible with signaling. We suggest that the stereotypical TCR-MHC docking paradigm evolved from productive signaling geometries and that TCR signaling can be modulated by peptides that are recognized in alternative TCR-pMHC binding orientations.
    Immunity 11/2011; 35(5):681-93. DOI:10.1016/j.immuni.2011.09.013 · 19.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: One key step in the immune response against infected or tumor cells is the recognition of the T-cell receptor (TCR) by class I major histocompatibility complexes. The complex between the HLA-B8 molecule and the immunodominant peptide with sequence FLRGRAYGL, derived from the Epstein-Barr virus, with the LC13 TCR has been determined by X-ray diffraction. The complex has been used as a starting point in a molecular dynamics study in order to investigate the dynamics of the complex association and to explore the specific interactions of the complex formation. The analyzed structures provided evidence that the peptide adopts an open type β-turn conformation close to C-terminal part, which dominates peptide/TCR interactions. Conformational energy landscape analysis indicated the presence of two conformational clusters in the peptide's structure, underlying the backbone flexibility of the peptide despite being surrounded by two receptors. The peptide/MHC/TCR interface was found to hold significant number of solvent molecules, more specifically the peptide has been found to have approximately seventeen hydrogen bonds with water molecules. The molecular dynamics simulation indicated the disruption of some MHC/TCR contacts, mainly with the CDR1α loop. However, several other interactions emerged that resulted in a stable association during the 20 ns trajectory, as revealed by the buried surface area analysis.
    Cell biochemistry and biophysics 07/2011; 60(3):283-95. DOI:10.1007/s12013-011-9151-2 · 2.38 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: T cell-mediated immunity requires T cell receptor (TCR) cross-reactivity, the mechanisms behind which remain incompletely elucidated. The alphabeta TCR A6 recognizes both the Tax (LLFGYPVYV) and Tel1p (MLWGYLQYV) peptides presented by the human class I MHC molecule HLA-A2. Here we found that although the two ligands are ideal structural mimics, they form substantially different interfaces with A6, with conformational differences in the peptide, the TCR, and unexpectedly, the MHC molecule. The differences between the Tax and Tel1p ternary complexes could not be predicted from the free peptide-MHC structures and are inconsistent with a traditional induced-fit mechanism. Instead, the differences were attributable to peptide and MHC molecular motion present in Tel1p-HLA-A2 but absent in Tax-HLA-A2. Differential "tuning" of the dynamic properties of HLA-A2 by the Tax and Tel1p peptides thus facilitates cross-recognition and impacts how structural diversity can be presented to and accommodated by receptors of the immune system.
    Immunity 12/2009; 31(6):885-96. DOI:10.1016/j.immuni.2009.11.003 · 19.75 Impact Factor