Article

Control of IS911 target selection: how OrfA may ensure IS dispersion.

Laboratoire de Microbiologie et Génétique Moléculaire (UMR 5100 CNRS - U.Toulouse-3), 118 rte. de Narbonne, Bât. IBCG, 31062 Toulouse Cedex 09, France.
Molecular Microbiology (Impact Factor: 4.96). 04/2007; 63(6):1701-9. DOI:10.1111/j.1365-2958.2007.05615.x
Source: PubMed

ABSTRACT IS911 transposition involves a closed circular insertion sequence intermediate (IS-circle) and two IS-encoded proteins: the transposase OrfAB and OrfA which regulates IS911 insertion. OrfAB alone promotes insertion preferentially next to DNA sequences resembling IS911 ends while the addition of OrfA strongly stimulates insertion principally into DNA targets devoid of the IS911 end sequences. OrfAB shares its N-terminal region with OrfA. This includes a helix-turn-helix (HTH) motif and the first three of four heptads of a leucine zipper (LZ). OrfAB binds specifically to IS911 ends via its HTH whereas OrfA does not. We show here: that OrfA binds DNA non-specifically and that this requires the HTH; that OrfA LZ is required for its multimerization; and that both motifs are essential for OrfA activity. We propose that these OrfA properties are required to assemble a nucleoprotein complex committed to random IS911 insertion. This control of IS911 insertion activity by OrfA in this way would assure its dispersion.

0 0
 · 
0 Bookmarks
 · 
64 Views
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Tight regulation of transposition activity is essential to limit damage transposons may cause by generating potentially lethal DNA rearrangements. Assembly of a bona fide protein-DNA complex, the transpososome, within which transposition is catalysed, is a crucial checkpoint in this regulation. In the case of IS911, a member of the large IS3 bacterial insertion sequence family, the transpososome (synaptic complex A; SCA) is composed of the right and left inverted repeated DNA sequences (IRR and IRL) bridged by the transposase, OrfAB (the IS911-encoded enzyme that catalyses transposition). To characterise further this important protein-DNA complex in vitro, we used different tagged and/or truncated transposase forms and analysed their interaction with IS911 ends using gel electrophoresis. Our results allow us to propose a model in which SCA is assembled with a dimeric form of the transposase. Furthermore, we present atomic force microscopy results showing that the terminal inverted repeat sequences are probably assembled in a parallel configuration within the SCA. These results represent the first step in the structural description of the IS911 transpososome, and are discussed in comparison with the very few other transpososome examples described in the literature.
    Mobile DNA. 01/2010; 1(1):16.
  • [show abstract] [hide abstract]
    ABSTRACT: Bacterial transposable elements (IS elements, transposons) represent an important determinant of genome structure and dynamics, and are a major force driving genome evolution. Here, we have tested whether bacterial insertion sequences (IS elements) can transpose in a prokaryotic compartment of the plant cell, the plastid (chloroplast). Using plastid transformation, we have integrated different versions of the Escherichia coli IS element IS150 into the plastid genome of tobacco (Nicotiana tabacum) plants. We show that IS150 is faithfully mobilized inside the chloroplast, and that enormous quantities of transposition intermediates accumulate. As synthesis of the IS150 transposase is dependent upon programmed ribosomal frame shifting, our data indicate that this process also occurs in chloroplasts. Interestingly, all insertion events detected affect a single site in the plastid genome, suggesting that the integration of IS150 is highly sequence dependent. In contrast, the initiation of the transposition process was found to be independent of the sequence context. Finally, our data also demonstrate that plastids lack the capacity to repair double-strand breaks in their genomes by non-homologous end joining, a finding that has important implications for genome stability, and which may explain the peculiar immunity of the plastid to invading promiscuous DNA sequences of nuclear and mitochondrial origin.
    The Plant Journal 02/2009; 58(3):423-36. · 6.58 Impact Factor
  • Source
    [show abstract] [hide abstract]
    ABSTRACT: Transposition in IS3, IS30, IS21 and IS256 insertion sequence (IS) families utilizes an unconventional two-step pathway. A figure-of-eight intermediate in Step I, from asymmetric single-strand cleavage and joining reactions, is converted into a double-stranded minicircle whose junction (the abutted left and right ends) is the substrate for symmetrical transesterification attacks on target DNA in Step II, suggesting intrinsically different synaptic complexes (SC) for each step. Transposases of these ISs bind poorly to cognate DNA and comparative biophysical analyses of SC I and SC II have proven elusive. We have prepared a native, soluble, active, GFP-tagged fusion derivative of the IS2 transposase that creates fully formed complexes with single-end and minicircle junction (MCJ) substrates and used these successfully in hydroxyl radical footprinting experiments. In IS2, Step I reactions are physically and chemically asymmetric; the left imperfect, inverted repeat (IRL), the exclusive recipient end, lacks donor function. In SC I, different protection patterns of the cleavage domains (CDs) of the right imperfect inverted repeat (IRR; extensive in cis) and IRL (selective in trans) at the single active cognate IRR catalytic center (CC) are related to their donor and recipient functions. In SC II, extensive binding of the IRL CD in trans and of the abutted IRR CD in cis at this CC represents the first phase of the complex. An MCJ substrate precleaved at the 3' end of IRR revealed a temporary transition state with the IRL CD disengaged from the protein. We propose that in SC II, sequential 3' cleavages at the bound abutted CDs trigger a conformational change, allowing the IRL CD to complex to its cognate CC, producing the second phase. Corroborating data from enhanced residues and curvature propensity plots suggest that CD to CD interactions in SC I and SC II require IRL to assume a bent structure, to facilitate binding in trans. Different transpososomes are assembled in each step of the IS2 transposition pathway. Recipient versus donor end functions of the IRL CD in SC I and SC II and the conformational change in SC II that produces the phase needed for symmetrical IRL and IRR donor attacks on target DNA highlight the differences.
    Mobile DNA. 01/2012; 3(1):1.