Article

Application of a microbial toxicity assay for monitoring treatment effectiveness of pentachlorophenol in water using UV photolysis and TiO2 photocatalysis.

Institute of Health and Environment, School of Public Health, Seoul National University, 28 Yunkeon, Chongro, Seoul 110-799, Republic of Korea.
Journal of Hazardous Materials (Impact Factor: 3.93). 10/2007; 148(1-2):281-6. DOI: 10.1016/j.jhazmat.2007.02.035
Source: PubMed

ABSTRACT Conventional approaches for monitoring the effectiveness of wastewater treatment processes include evaluating the degradation of the target compound and/or generation of its nontoxic byproducts. These approaches are, however, limited because routine chemical analyses alone are neither able to fully address potential hazard to biological receptors nor characterize potential synergistic interactions. This study was carried out to investigate the degradation effectiveness of pentachlorophenol (PCP) by treatment with UV-A, UV-B photolysis, sunlight, TiO(2) photocatalysis, and/or their combinations. Chemical analyses of the parent compound and its selected byproducts, as well as acute toxicity assessment using the luminescent bacteria Vibrio fischeri (Microtox), were conducted during and after the various photolytic and photocatalytic treatments. In general, the toxicity reduction pattern observed after treatment corresponded well with the chemical degradation data. However, it should be noted that there were occasions that acute microbial toxicity was observed even from the treated water samples, some of which showed complete removal of the parent compound. This post-treatment toxicity might be due to toxic PCP byproducts, which may include polychlorinated dibenzodioxins/furans, tetrachloro-p-benzoquinone, and other intermediates. The TiO(2) photocatalysis with UV-B photolysis was the most effective method to remove both PCP and its toxic derivatives in the water. The Microtox assay is an easy to use and promising approach for evaluating the effectiveness of wastewater treatment processes.

0 Bookmarks
 · 
99 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Glycosaminoglycans (GAGs) have diverse functions in the body and are involved in viral infection. The purpose of this study was to evaluate the possible roles of the E-disaccharide units GlcAβ1-3GalNAc(4,6-O-disulfate) of chondroitin sulfate (CS), a GAG involved in neuritogenesis and neuronal migration, in Japanese encephalitis virus (JEV) infection. Soluble CS-E (sCS-E) derived from squid cartilage inhibited JEV infection in African green monkey kidney-derived Vero cells and baby hamster kidney-derived BHK cells by interfering with viral attachment. In contrast, sCS-E enhanced viral infection in the mouse neuroblastoma cell line Neuro-2a, despite the fact that viral attachment to Neuro-2a cells was inhibited by sCS-E. This enhancement effect in Neuro-2a cells seemed to be related to increased viral RNA replication and was also observed in a rat infection model in which intracerebral coadministration of sCS-E with JEV in 17-day-old rats resulted in higher brain viral loads than in rats infected without sCS-E administration. These results show the paradoxical effects of sCS-E on JEV infection in different cell types and indicate that potential use of sCS-E as an antiviral agent against JEV infection should be approached with caution considering its effects in the neuron, the major target of JEV.
    Biochemical and Biophysical Research Communications 06/2011; 409(4):717-22. · 2.41 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Studies of the modes of adsorption and the associated changes in electronic structures of renewable organic compounds are needed in order to understand the fundamentals behind surface reactions of catalysts for future energies. Using planewave density functional theory (DFT) calculations, the adsorption of ethanol on perfect and O-defected TiO(2) rutile (110) surfaces was examined. On both surfaces the dissociative adsorption mode on five-fold coordinated Ti cations (Ti(4+)(5c)) was found to be more favourable than the molecular adsorption mode. On the stoichiometric surface E(ads) was found to be equal to 0.85 eV for the ethoxide mode and equal to 0.76 eV for the molecular mode. These energies slightly increased when adsorption occurred on the Ti(4+)(5c) closest to the O-defected site. However, both considerably increased when adsorption occurred at the removed bridging surface O; interacting with Ti(3+) cations. In this case the dissociative adsorption becomes strongly favoured (E(ads) = 1.28 eV for molecular adsorption and 2.27 eV for dissociative adsorption). Geometry and electronic structures of adsorbed ethanol were analysed in detail on the stoichiometric surface. Ethanol does not undergo major changes in its structure upon adsorption with its C-O bond rotating nearly freely on the surface. Bonding to surface Ti atoms is a σ type transfer from the O2p of the ethanol-ethoxide species. Both ethanol and ethoxide present potential hole traps on O lone pairs. Charge density and work function analyses also suggest charge transfer from the adsorbate to the surface, in which the dissociative adsorptions show a larger charge transfer than the molecular adsorption mode.
    Physical Chemistry Chemical Physics 07/2012; 14(34):11910-9. · 3.83 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Chlorophenols are well-known priority pollutants and many different treatments have been assessed to facilitate their removal from industrial wastewater. However, an absolute and optimum solution still has to be practically implemented in an industrial setting. In this work, a series ofphysical, chemical and biochemical treatments have been systematically tested for the removal of 4-chlorophenol, and their results have been compared in order to determine the most effective treatment based on removal efficiency and residual by-product formation. Chemical treatments based on advanced oxidation processes (AOP) produced the best results on rate and extent of pollutant removal. The non-chemical technologies showed advantages in terms of complete (in the case of adsorption) or easy (enzymatic treatments) removal of toxic treatment by-products. The AOP methods led to the production of different photoproducts depending on the chosen treatment. Toxic products remained in most cases following treatment, though the toxicity level is significantly reduced with combination treatments. Among the treatments, a photochemical method combining UV, produced with a KrCl excilamp, and hydrogen peroxide achieved total removal of chlorophenol and all by-products and is considered the best treatment for chlorophenol removal.
    Environmental Technology 01/2012; 33(7-9):1055-64. · 1.61 Impact Factor

Full-text (2 Sources)

View
6 Downloads
Available from
May 15, 2014