Article

Four functionally distinct populations of human effector-memory CD8+ T lymphocytes.

Division of Clinical Onco-Immunology, Ludwig Institute for Cancer Research-Lausanne Branch, University Hospital of Lausanne, Lausanne, Switzerland.
The Journal of Immunology (Impact Factor: 5.36). 05/2007; 178(7):4112-9. DOI: 10.4049/jimmunol.178.7.4112
Source: PubMed

ABSTRACT In humans, the pathways of memory and effector T cell differentiation remain poorly defined. We have dissected the functional properties of ex vivo effector-memory (EM) CD45RA-CCR7- T lymphocytes present within the circulating CD8+ T cell pool of healthy individuals. Our studies show that EM T cells are heterogeneous and are subdivided based on differential CD27 and CD28 expression into four subsets. EM(1) (CD27+CD28+) and EM(4) (CD27-CD28+) T cells express low levels of effector mediators such as granzyme B and perforin and high levels of CD127/IL-7Ralpha. EM(1) cells also have a relatively short replicative history and display strong ex vivo telomerase activity. Therefore, these cells are closely related to central-memory (CD45RA-CCR7+) cells. In contrast, EM(2) (CD27+CD28-) and EM(3) (CD27-CD28-) cells express mediators characteristic of effector cells, whereby EM(3) cells display stronger ex vivo cytolytic activity and have experienced larger numbers of cell divisions, thus resembling differentiated effector (CD45RA+CCR7-) cells. These data indicate that progressive up-regulation of cytolytic activity and stepwise loss of CCR7, CD28, and CD27 both characterize CD8+ T cell differentiation. Finally, memory CD8+ T cells not only include central-memory cells but also EM(1) cells, which differ in CCR7 expression and may therefore confer memory functions in lymphoid and peripheral tissues, respectively.

0 Followers
 · 
116 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The ecto-5'-nucleotidase (CD73) is expressed by T-cell subsets, myeloid derived suppressive cells and endothelial cells. It works in conjunction with CD39 to regulate the formation and degradation of adenosine in vivo. Adenosine has previously been shown to suppress the proliferation and cytokine secretion of T-cells and recent evidence suggests that inhibition of CD73 has the potential to enhance T-cell directed therapies. Here we utilised a CD73 knockout mouse model to assess the suppressive ability of CD73 on CD8 + T-cell classical memory and memory ''inflation'', induced by murine cytomegalovirus (MCMV) infection and adenovirus immunisation. We show that CD73 is dispensable for normal CD8 + T-cell differentiation and function in both models. Thus CD73 as a suppressor of CD8 + T-cells is unlikely to play a deterministic role in the generation and functional characteristics of antiviral memory in these settings.
    PLoS ONE 12/2014; DOI:10.1371/journal.pone.0114323 · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Rationale: There is mounting evidence of a higher incidence of coronary heart disease (CHD) in cytomegalovirus (CMV) seropositive individuals. Objective: The aim of this study was to investigate whether acute MI triggers an inflammatory T-cell response that might lead to accelerated immunosenescence in CMV-seropositive patients. Methods and Results: Thirty-four patients with acute MI undergoing primary PCI (PPCI) were longitudinally studied within 3 months following reperfusion (Cohort A). In addition, 54 patients with acute and chronic MI were analyzed in a cross-sectional study (Cohort B). CMV-seropositive patients demonstrated a greater fall in the concentration of terminally differentiated CD8 effector memory T cells (TEMRA) in peripheral blood during the first 30 min of reperfusion compared with CMV-seronegative patients (-192 vs. -63 cells/µl; p=0.008), correlating with the expression of programmed cell death-1 (PD-1) before PPCI (r=0.8; p=0.0002). A significant proportion of TEMRA cells remained depleted for at least 3 months in CMV-seropositive patients. Using high-throughput 13-parameter flow cytometry and HLA class I CMV-specific dextramers, we confirmed an acute and persistent depletion of terminally differentiated TEMRA and CMV-specific CD8(+) cells in CMV-seropositive patients. Long-term reconstitution of the TEMRA pool in chronic CMV-seropositive post-MI patients was associated with signs of terminal differentiation including an increase in KLRG1 and shorter telomere length in CD8(+) T cells (2225 bp vs. 3397 bp; p<0.001). Conclusions: Myocardial ischemia and reperfusion in CMV-seropositive patients undergoing PPCI leads to acute loss of antigen-specific, terminally differentiated CD8 T-cells, possibly through PD-1-dependent programmed cell death. Our results suggest that acute MI and reperfusion accelerate immunosenescence in CMV-seropositive patients.
    Circulation Research 11/2014; 116(1). DOI:10.1161/CIRCRESAHA.116.304393 · 11.09 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NK cells are responsible for recognizing and killing transformed, stressed, and infected cells. They recognize a set of non-Ag-specific features termed "altered self" through combinatorial signals from activating and inhibitory receptors. These NKRs are also expressed on CD4(+) and CD8(+) T cells, B cells, and monocytes, although a comprehensive inventory of NKR expression patterns across leukocyte lineages has never been performed. Using mass cytometry, we found that NKR expression patterns distinguish cell lineages in human peripheral blood. In individuals with high levels of CD57, indicative of a mature immune repertoire, NKRs are more likely to be expressed on non-NK cells, especially CD8(+) T cells. Mature NK and CD8(+) T cell populations show increased diversity of NKR surface expression patterns, but with distinct determinants: mature NK cells acquire primarily inhibitory receptors, whereas CD8(+) T cells attain a specific subset of both activating and inhibitory receptors, potentially imbuing them with a distinct functional role. Concurrently, monocytes show decreased expression of the generalized inhibitory receptor leukocyte Ig-like receptor subfamily b member 1, consistent with an increased activation threshold. Therefore, NKR expression is coordinately regulated as the immune system matures, resulting in the transfer of "altered self" recognition potential among leukocyte lineages. This likely reduces Ag specificity in the mature human immune system, and implies that vaccines and therapeutics that engage both its innate and adaptive branches may be more effective in the settings of aging and chronic infection.

Full-text (2 Sources)

Download
87 Downloads
Available from
May 21, 2014