Ubiquitin-independent proteasomal degradation of Fra-1 is antagonized by Erk1/2 pathway-mediated phosphorylation of a unique C-terminal destabilizer

Institut de Génétique Moléculaire de Montpellier, CNRS, 1919 Route de Mende, Montpellier F-34293, France.
Molecular and Cellular Biology (Impact Factor: 4.78). 07/2007; 27(11):3936-50. DOI: 10.1128/MCB.01776-06
Source: PubMed


Fra-1, a transcription factor that is phylogenetically and functionally related to the proto-oncoprotein c-Fos, controls many essential cell functions. It is expressed in many cell types, albeit with differing kinetics and abundances. In cells reentering the cell cycle, Fra-1 expression is transiently stimulated albeit later than that of c-Fos and for a longer time. Moreover, Fra-1 overexpression is found in cancer cells displaying high Erk1/2 activity and has been linked to tumorigenesis. One crucial point of regulation of Fra-1 levels is controlled protein degradation, the mechanism of which remains poorly characterized. Here, we have combined genetic, pharmacological, and signaling studies to investigate this process in nontransformed cells and to elucidate how it is altered in cancer cells. We report that the intrinsic instability of Fra-1 depends on a single destabilizer contained within the C-terminal 30 to 40 amino acids. Two serines therein, S252 and S265, are phosphorylated by kinases of the Erk1/2 pathway, which compromises protein destruction upon both normal physiological induction and tumorigenic constitutive activation of this cascade. Our data also indicate that Fra-1, like c-Fos, belongs to a small group of proteins that may, under certain circumstances, undergo ubiquitin-independent degradation by the proteasome. Our work reveals both similitudes and differences between Fra-1 and c-Fos degradation mechanisms. In particular, the presence of a single destabilizer within Fra-1, instead of two that are differentially regulated in c-Fos, explains the much faster turnover of the latter when cells traverse the G(0)/G(1)-to-S-phase transition. Finally, our study offers further insights into the signaling-regulated expression of the other Fos family proteins.

Download full-text


Available from: Dany Chalbos,
  • Source
    • "Fra-1 is a Fos family member that is over-expressed in diverse types of human cancers including brain [37], [43], lung [44], oesophagus [36], thyroid [38], colorectal, skin, ovary, etc. (reviewed in [24], [27]). Of the four Fos family members, Fra-1 is likely to be the most frequently expressed in different forms of human cancer [24], [27]. Several studies have shown that Fra-1 over-expression in breast tumor cell lines is associated with an aggressive behavior of these cells [28], [45]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: A shared characteristic of tumor cells is their exacerbated growth. Consequently, tumor cells demand high rates of phospholipid synthesis required for membrane biogenesis to support their growth. c-Fos, in addition to its AP-1 transcription factor activity, is the only protein known up to date that is capable of activating lipid synthesis in normal and brain tumor tissue. For this latter activity, c-Fos associates to the endoplasmic reticulum (ER) through its N-terminal domain and activates phospholipid synthesis, an event that requires it Basic Domain (BD) (aa 139-159). Fra-1, another member of the FOS family of proteins, is over-expressed in human breast cancer cells and its BD is highly homologous to that of c-Fos with two conservative substitutions in its basic amino acids. Consequently, herein we examined if Fra-1 and/or c-Fos participate in growth of breast cancer cells by activating phospholipid synthesis as found previously for c-Fos in brain tumors. We found both Fra-1 and c-Fos over-expressed in >95% of human ductal breast carcinoma biopsies examined contrasting with the very low or undetectable levels in normal tissue. Furthermore, both proteins associate to the ER and activate phospholipid synthesis in cultured MCF7 and MDA-MB231 breast cancer cells and in human breast cancer samples. Stripping tumor membranes of Fra-1 and c-Fos prior to assaying their lipid synthesis capacity in vitro results in non-activated lipid synthesis levels that are restored to their initial activated state by addition of Fra-1 and/or c-Fos to the assays. In MDA-MB231 cells primed to proliferate, blocking Fra-1 and c-Fos with neutralizing antibodies blocks lipid-synthesis activation and cells do not proliferate. Taken together, these results disclose the cytoplasmic activity of Fra-1 and c-Fos as potential targets for controlling growth of breast carcinomas by decreasing the rate of membrane biogenesis required for growth.
    PLoS ONE 01/2013; 8(1):e53211. DOI:10.1371/journal.pone.0053211 · 3.23 Impact Factor
  • Source
    • "The expression of c-Fos protein (62 kDa) is rapidly and transiently induced by a variety of extracellular stimuli, including growth factors. In addition to increased expression, phosphorylation of Fos proteins by ERK kinases in response to external stimuli may further increase transcriptional activity [51–54]. Deregulated expression of c-Fos can result in neoplastic cellular transformation [51]. Figure 11 shows that exposure of A549 cells to 2 μL/mL AECS or 200 ng/mL p-BQ for 1 hr results in phosphorylation of c-Myc protein at Thr58/Ser62 and overexpression of c-Fos. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Lung cancer is the leading cause of cancer dearth. Cigarette smoking is the strongest risk factor for developing lung cancer, which is conceivably initiated by proliferation. Here, we show that low concentration of aqueous extract of cigarette smoke (AECS) causes excessive proliferation of human lung epithelial cells (A549) without any apoptotic cell death. The causative factor responsible for AECS-induced proliferation has been identified as p-benzoquinone (p-BQ). Coimmunoprecipitation and immunoblot experiments indicate that p-BQ binds with epidermal growth factor receptor (EGFR). However, in contrast to EGF, it causes aberrant phosphorylation of EGFR that lacks c-Cbl-mediated ubiquitination and degradation resulting in persistent activation of EGFR. This is followed by activation of Hras + Kras and the downstream survival and proliferative signaling molecules Akt and ERK1/2, as well as the nuclear transcription factors c-Myc and c-Fos. Vitamin C and/or antibody to p-BQ prevents AECS/p-BQ-induced proliferation of lung cells apparently by inactivating p-BQ and thereby preventing activation of EGFR and the downstream signaling molecules. The results suggest that vitamin C and/or antibody to p-BQ may provide a novel intervention for preventing initiation of lung cancer in smokers.
    Journal of Oncology 05/2011; 2011(1687-8450):561862. DOI:10.1155/2011/561862
  • Source
    • "The priming-phosphorylation sites are largely conserved in other Fos proteins and the functionality of the Fra1 phosphorylation sites downstream of Ras have been demonstrated in cultured cells (Basbous et al., 2007; Doehn et al., 2009; Shin et al., 2010). Despite this compelling evidence, Fra1 is unlikely an essential target of Ras during skin tumourigenesis as it cannot substitute for Fos in papilloma formation. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mice lacking c-fos develop osteopetrosis due to a block in osteoclast differentiation. Carboxy-terminal phosphorylation of Fos on serine 374 by ERK1/2 and serine 362 by RSK1/2 regulates Fos stability and transactivation potential in vitro. To assess the physiological relevance of Fos phosphorylation in vivo, serine 362 and/or serine 374 was replaced by alanine (Fos362A, Fos374A and FosAA) or by phospho-mimetic aspartic acid (FosDD). Homozygous mutants were healthy and skeletogenesis was largely unaffected. Fos C-terminal phosphorylation, predominantly on serine 374, was found important for osteoclast differentiation in vitro and affected lipopolysaccharide (LPS)-induced cytokine response in vitro and in vivo. Importantly, skin papilloma development was delayed in FosAA, Fos362A and Rsk2-deficient mice, accelerated in FosDD mice and unaffected in Fos374A mutants. Furthermore, the related Fos protein and putative RSK2 target Fra1 failed to substitute for Fos in papilloma development. This indicates that phosphorylation of serines 362 and 374 exerts context-dependent roles in modulating Fos activity in vivo. Inhibition of Fos C-terminal phosphorylation on serine 362 by targeting RSK2 might be of therapeutic relevance for skin tumours.
    Oncogene 11/2010; 30(13):1506-17. DOI:10.1038/onc.2010.542 · 8.46 Impact Factor
Show more