The BceRS two-component regulatory system induces expression of the bacitracin transporter, BceAB, in Bacillus subtilis.

Department of Molecular Biology, School of Health Sciences, Kyorin University, 476 Miyashita, Hachiouji, Tokyo 192-0005, Japan.
Molecular Microbiology (Impact Factor: 5.03). 09/2003; 49(4):1135-44. DOI: 10.1046/j.1365-2958.2003.03653.x
Source: PubMed

ABSTRACT BceA and bceB encode a nucleotide-binding domain (NBD) and membrane-spanning domain (MSD) subunit, respectively, of an ATP-binding cassette (ABC) transporter in Bacillus subtilis. Disruption of these genes resulted in hypersensitivity to bacitracin, a peptide antibiotic that is non-ribosomally synthesized in some strains of Bacillus. Northern hybridization analyses showed that expression of the bceAB operon is induced by bacitracin present in the growth medium. The bceRS genes encoding a two-component regulatory system are located immediately upstream of bceAB. Deletion analyses of the bceAB promoter together with DNase I footprinting experiments revealed that a sensor kinase, BceS, responds to extracellular bacitracin either directly or indirectly and transmits a signal to a cognate response regulator, BceR. The regulator binds directly to the upstream region of the bceAB promoter and upregulates the expression of bceAB genes. The bcrC gene product is additionally involved in bacitracin resistance. The expression of bcrC is dependent on the ECF sigma factors, sigmaM and sigmaX, but not on the BceRS two-component system. In view of these results, possible roles of BceA, BceB and BcrC in bacitracin resistance of B. subtilis 168 are discussed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antimicrobial peptides, or AMPs, play a significant role in many environments as a tool to remove competing organisms. In response, many bacteria have evolved mechanisms to resist these peptides and prevent AMP-mediated killing. The development of AMP resistance mechanisms is driven by direct competition between bacterial species, as well as host and pathogen interactions. Akin to the number of different AMPs found in nature, resistance mechanisms that have evolved are just as varied and may confer broad-range resistance or specific resistance to AMPs. Specific mechanisms of AMP resistance prevent AMP-mediated killing against a single type of AMP, while broad resistance mechanisms often lead to a global change in the bacterial cell surface and protect the bacterium from a large group of AMPs that have similar characteristics. AMP resistance mechanisms can be found in many species of bacteria and can provide a competitive edge against other bacterial species or a host immune response. Gram-positive bacteria are one of the largest AMP producing groups, but characterization of Gram-positive AMP resistance mechanisms lags behind that of Gram-negative species. In this review we present a summary of the AMP resistance mechanisms that have been identified and characterized in Gram-positive bacteria. Understanding the mechanisms of AMP resistance in Gram-positive species can provide guidelines in developing and applying AMPs as therapeutics, and offer insight into the role of resistance in bacterial pathogenesis.
    Antibiotics (Basel, Switzerland). 10/2014; 3(4):461-492.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Bacillus subtilis strain NKYL29 is an antimicrobial-peptide-producing strain isolated from the soil of Ranzhuang Tunnel in Hebei Province, China. Here, we present the draft genome of this strain, which provides the genetic basis for application of the antimicrobial peptide.
    Genome Announcements. 11/2014;
  • [Show abstract] [Hide abstract]
    ABSTRACT: Resistance of Enterococcus faecalis against antimicrobial peptides, both of host origin and produced by other bacteria of the gut microflora, is likely to be an important factor in the bacterium's success as an intestinal commensal. The aim of this study was to identify proteins with a role in resistance against the model antimicrobial peptide bacitracin. Proteome analysis of bacitracin-treated and untreated cells showed that bacitracin stress induced the expression of cell wall-biosynthetic proteins and caused metabolic rearrangements. Among the proteins with increased production, an ATP-binding cassette (ABC) transporter with similarity to known peptide antibiotic resistance systems was identified and shown to mediate resistance against bacitracin. Expression of the transporter was dependent on a two-component regulatory system and a second ABC transporter, which were identified by genome analysis. Both resistance and the regulatory pathway could be functionally transferred to Bacillus subtilis, proving the function and sufficiency of these components for bacitracin resistance. Our data therefore show that the two ABC transporters and the two-component system form a resistance network against antimicrobial peptides in E. faecalis, where one transporter acts as the sensor that activates the TCS to induce production of the second transporter, which mediates the actual resistance.
    Antimicrobial Agents and Chemotherapy 03/2014; 58(3). · 4.45 Impact Factor