The BceRS two-component regulatory system induces expression of the bacitracin transporter, BceAB, in Bacillus subtilis.

Department of Molecular Biology, School of Health Sciences, Kyorin University, 476 Miyashita, Hachiouji, Tokyo 192-0005, Japan.
Molecular Microbiology (Impact Factor: 5.03). 09/2003; 49(4):1135-44. DOI: 10.1046/j.1365-2958.2003.03653.x
Source: PubMed

ABSTRACT BceA and bceB encode a nucleotide-binding domain (NBD) and membrane-spanning domain (MSD) subunit, respectively, of an ATP-binding cassette (ABC) transporter in Bacillus subtilis. Disruption of these genes resulted in hypersensitivity to bacitracin, a peptide antibiotic that is non-ribosomally synthesized in some strains of Bacillus. Northern hybridization analyses showed that expression of the bceAB operon is induced by bacitracin present in the growth medium. The bceRS genes encoding a two-component regulatory system are located immediately upstream of bceAB. Deletion analyses of the bceAB promoter together with DNase I footprinting experiments revealed that a sensor kinase, BceS, responds to extracellular bacitracin either directly or indirectly and transmits a signal to a cognate response regulator, BceR. The regulator binds directly to the upstream region of the bceAB promoter and upregulates the expression of bceAB genes. The bcrC gene product is additionally involved in bacitracin resistance. The expression of bcrC is dependent on the ECF sigma factors, sigmaM and sigmaX, but not on the BceRS two-component system. In view of these results, possible roles of BceA, BceB and BcrC in bacitracin resistance of B. subtilis 168 are discussed.

  • [Show abstract] [Hide abstract]
    ABSTRACT: d-Xylose is the most abundant fermentable pentose in nature and can serve as a carbon source for many bacterial species. Since d-xylose constitutes the major component of hemicellulose, its metabolism is important for lignocellulosic biomass utilization. Here, we report a six-protein module for d-xylose signaling, uptake and regulation in solvent-producing Clostridium beijerinckii. This module consists of a novel “three-component system” (a putative periplasmic ABC transporter substrate-binding protein XylFII and a two-component system LytS/YesN) and an ABC-type d-xylose transporter XylFGH. Interestingly, we demonstrate that, although XylFII harbors a transmembrane domain, it is not involved in d-xylose transport. Instead, XylFII acts as a signal sensor to assist the response of LytS/YesN to extracellular d-xylose, thus enabling LytS/YesN to directly activate the transcription of the adjacent xylFGH genes and thereby promote the uptake of d-xylose. To our knowledge, XylFII is a novel single transmembrane sensor that assists two-component system to respond to extracellular sugar molecules. Also of significance, this “three-component system” is widely distributed in Firmicutes, indicating that it may play a broad role in this bacterial phylum. The results reported here provide new insights into the regulatory mechanism of d-xylose sensing and transport in bacteria.
    Molecular Microbiology 12/2014; 95(4). DOI:10.1111/mmi.12894 · 5.03 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The bacterial cytoplasm lies within a multilayered envelope that must be protected from internal and external hazards. This protection is provided by cell envelope stress responses (ESRs), which detect threats and reprogram gene expression to ensure survival. Pathogens frequently need these ESRs to survive inside the host, where their envelopes face dangerous environmental changes and attack from antimicrobial molecules. In addition, some virulence genes have become integrated into ESR regulons. This might be because these genes can protect the cell envelope from damage by host molecules, or it might help ESRs to reduce stress by moderating the assembly of virulence factors within the envelope. Alternatively, it could simply be a mechanism to coordinate the induction of virulence gene expression with entry into the host. Here, we briefly describe some of the bacterial ESRs, followed by examples where they control virulence gene expression in both Gram-negative and Gram-positive pathogens.
    Virulence 11/2014; 5(8):835-51. DOI:10.4161/21505594.2014.965580 · 3.32 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The dramatic rise in the incidence of antibiotic resistance demands that new therapeutic options will have to be developed. One potentially interesting class of antimicrobials are the modified bacteriocins termed lantibiotics, which are bacterially produced, posttranslationally modified, lanthionine/methyllanthionine-containing peptides. It is interesting that low levels of resistance have been reported for lantibiotics compared with commercial antibiotics. Given that there are very few examples of naturally occurring lantibiotic resistance, attempts have been made to deliberately induce resistance phenotypes in order to investigate this phenomenon. Mechanisms that hinder the action of lantibiotics are often innate systems that react to the presence of any cationic peptides/proteins or ones which result from cell well damage, rather than being lantibiotic specific. Such resistance mechanisms often arise due to altered gene regulation following detection of antimicrobials/cell wall damage by sensory proteins at the membrane. This facilitates alterations to the cell wall or changes in the composition of the membrane. Other general forms of resistance include the formation of spores or biofilms, which are a common mechanistic response to many classes of antimicrobials. In rare cases, bacteria have been shown to possess specific antilantibiotic mechanisms. These are often species specific and include the nisin lytic protein nisinase and the phenomenon of immune mimicry. Copyright © 2015, American Society for Microbiology. All Rights Reserved.
    Microbiology and molecular biology reviews: MMBR 06/2015; 79(2):171-191. DOI:10.1128/MMBR.00051-14 · 15.26 Impact Factor