Article

Prospective study on dietary intakes of folate, betaine, and choline and cardiovascular disease risk in women.

Wageningen University, Wageningen, The Netherlands.
European Journal of Clinical Nutrition (Impact Factor: 2.95). 04/2008; 62(3):386-94. DOI: 10.1038/sj.ejcn.1602725
Source: PubMed

ABSTRACT To investigate the association between dietary intakes of folate, betaine and choline and the risk of cardiovascular disease (CVD).
Prospective cohort study. Subjects: A total of 16 165 women aged 49-70 years without prior CVD. Subjects were breast cancer screening participants in the PROSPECT-EPIC cohort, which is 1 of the 2 Dutch contributions to the European Prospective Investigation into Cancer and Nutrition (EPIC).
Each participant completed a validated food frequency questionnaire. Folate intake was calculated with the Dutch National Food Database. Betaine and choline intakes were calculated with the USDA database containing choline and betaine contents of common US foods. Data on coronary heart disease (CHD) events and cerebrovascular accident (CVA) events morbidity data were obtained from the Dutch Centre for Health Care Information.
During a median follow-up period of 97 months, 717 women were diagnosed with CVD. After adjustment, neither folate, nor betaine, nor choline intakes were associated with CVD (hazard ratios for highest versus lowest quartile were 1.23 (95% confidence interval 0.75; 2.01), 0.90 (0.69; 1.17), 1.04 (0.71; 1.53), respectively). In a subsample of the population, high folate and choline intakes were statistically significantly associated with lower homocysteine levels. High betaine intake was associated with slightly lower high-density lipoprotein (HDL)-cholesterol concentrations.
Regular dietary intakes of folate, betaine and choline were not associated with CVD risk in post-menopausal Dutch women. However, the effect of doses of betaine and choline beyond regular dietary intake--for example, via supplementation or fortification--remains unknown.

Download full-text

Full-text

Available from: Margreet Olthof, Jul 30, 2014
0 Followers
 · 
123 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Betaine is an essential osmolyte and source of methyl groups and comes from either the diet or by the oxidation of choline. Its metabolism methylates homocysteine to methionine, also producing N,N-dimethylglycine. Betaine insufficiency is associated with the metabolic syndrome, lipid disorders and diabetes, and may have a role in vascular and other diseases. Betaine is important in development, from the pre-implantation embryo to infancy. Betaine supplementation improves animal and poultry health, but the effect of long-term supplementation on humans is not known, though reports that it improves athletic performance will stimulate further studies. Subsets of the population that may benefit from betaine supplementation could be identified by the laboratory, in particular those who excessively lose betaine through the urine.Plasma betaine is highly individual, in women typically 20–60 μmol/L and in men 25–75 μmol/L. Plasma dimethylglycine is typically < 10 μmol/L. Urine betaine excretion is minimal, even following a large betaine dose. It is constant, highly individual and normally < 35 mmol/mole creatinine. The preferred method of betaine measurement is by LC-MS/MS, which is rapid and capable of automation. Slower HPLC methods give comparable results. Proton NMR spectrometry is another option but caution is needed to avoid confusion with trimethylamine-N-oxide.
    Clinical biochemistry 06/2010; 43(9-43):732-744. DOI:10.1016/j.clinbiochem.2010.03.009 · 2.23 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Choline is an essential nutrient, but is also formed by de novo synthesis. Choline and its derivatives serve as components of structural lipoproteins, blood and membrane lipids, and as a precursor of the neurotransmitter acetylcholine. Pre-and postnatal choline availability is important for neurodevelopment in rodents. Choline is oxidized to betaine that serves as an osmoregulator and is a substrate in the betaine-homocysteine methyltransferase reaction, which links choline and betaine to the folate-dependent one-carbon metabolism. Choline and betaine are important sources of one-carbon units, in particular, during folate deficiency. Choline or betaine supplementation in humans reduces concentration of total homocysteine (tHcy), and plasma betaine is a strong predictor of plasma tHcy in individuals with low plasma concentration of folate and other B vitamins (B₂, B₆, and B₁₂) in combination TT genotype of the methylenetetrahydrofolate reductase 677 C->T polymorphism. The link to one-carbon metabolism and the recent availability of food composition data have motivated studies on choline and betaine as risk factors of chronic diseases previously studied in relation to folate and homocysteine status. High intake and plasma level of choline in the mother seems to afford reduced risk of neural tube defects. Intake of choline and betaine shows no consistent relation to cancer or cardiovascular risk or risk factors, whereas an unfavorable cardiovascular risk factor profile was associated with high choline and low betaine concentrations in plasma. Thus, choline and betaine showed opposite relations with key components of metabolic syndrome, suggesting a disruption of mitochondrial choline oxidation to betaine as part of the mitochondrial dysfunction in metabolic syndrome.
    Journal of Inherited Metabolic Disease 05/2010; 34(1):3-15. DOI:10.1007/s10545-010-9088-4 · 4.14 Impact Factor
  • Source