Agenesis of the corpus callosum: genetic, developmental and functional aspects of connectivity.

California Institute of Technology, MC 228-77 Pasadena, California 91125, USA.
Nature reviews Neuroscience (Impact Factor: 31.38). 05/2007; 8(4):287-99. DOI: 10.1038/nrn2107
Source: PubMed

ABSTRACT Agenesis of the corpus callosum (AgCC), a failure to develop the large bundle of fibres that connect the cerebral hemispheres, occurs in 1:4000 individuals. Genetics, animal models and detailed structural neuroimaging are now providing insights into the developmental and molecular bases of AgCC. Studies using neuropsychological, electroencephalogram and functional MRI approaches are examining the resulting impairments in emotional and social functioning, and have begun to explore the functional neuroanatomy underlying impaired higher-order cognition. The study of AgCC could provide insight into the integrated cerebral functioning of healthy brains, and may offer a model for understanding certain psychiatric illnesses, such as schizophrenia and autism.

Download full-text


Available from: Lynn K Paul, Jun 30, 2015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Agenesis of the corpus callosum is a model disease for disrupted connectivity of the human brain, in which the pathological formation of interhemispheric fibers results in subtle to severe cognitive deficits. Postnatal studies suggest that the characteristic abnormal pathways in this pathology are compensatory structures that emerge via neural plasticity. We challenge this hypothesis and assume a globally different network organization of the structural interconnections already in the fetal acallosal brain. Twenty fetuses with isolated corpus callosum agenesis with or without associated malformations were enrolled and fiber connectivity among 90 brain regions was assessed using in utero diffusion tensor imaging and streamline tractography. Macroscopic scale connectomes were compared to 20 gestational age-matched normally developing fetuses with multiple granularity of network analysis. Gradually increasing connectivity strength and tract diffusion anisotropy during gestation were dominant in antero-posteriorly running paramedian and antero-laterally running aberrant pathways, and in short-range connections in the temporoparietal regions. In fetuses with associated abnormalities, more diffuse reduction of cortico-cortical and cortico-subcortical connectivity was observed than in cases with isolated callosal agenesis. The global organization of anatomical networks consisted of less segregated nodes in acallosal brains, and hubs of dense connectivity, such as the thalamus and cingulate cortex, showed reduced network centrality. Acallosal fetal brains show a globally altered connectivity network structure compared to normals. Besides the previously described Probst and sigmoid bundles, we revealed a prenatally differently organized macroconnectome, dominated by increased connectivity. These findings provide evidence that abnormal pathways are already present during at early stages of fetal brain development in the majority of cerebral white matter.
    NeuroImage 02/2015; DOI:10.1016/j.neuroimage.2015.02.038 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The structural connectome has emerged as a powerful tool to characterize the network architecture of the human brain and shows great potential for generating important new biomarkers for neurologic and psychiatric disorders. The edges of the cerebral graph traverse white matter to interconnect cortical and subcortical nodes, although the anatomic embedding of these edges is generally overlooked in the literature. Mapping the paths of the connectome edges could elucidate the relative importance of individual white matter tracts to the overall network topology of the brain and also lead to a better understanding of the effect of regionally-specific white matter pathology on cognition and behavior. In this work, we introduce edge density imaging (EDI), which maps the number of network edges that pass through every white matter voxel. Test-retest analysis shows good to excellent reliability for edge density (ED) measurements, with consistent results using different cortical and subcortical parcellation schemes and different diffusion MR imaging acquisition parameters. We also demonstrate that ED yields complementary information to both traditional and emerging voxel-wise metrics of white matter microstructure and connectivity, including fractional anisotropy, track density, fiber orientation dispersion and neurite density. Our results demonstrate spatially ordered variations of ED throughout the white matter, notably including greater ED in posterior than anterior cerebral white matter. The EDI framework is employed to map the white matter regions that are enriched with pathways connecting rich club nodes and also those with high densities of intra-modular and inter-modular edges. We show that periventricular white matter has particularly high ED and high densities of rich club edges, which is significant for diseases in which these areas are selectively affected, ranging from white matter injury of prematurity in infants to leukoaraiosis in the elderly. Using edge betweenness centrality, we identify specific white matter regions involved in a large number of shortest paths, some containing highly connected rich club edges while others are relatively isolated within individual modules. Overall, these findings reveal an intricate relationship between white matter anatomy and the structural connectome, motivating further exploration of EDI for biomarkers of cognition and behavior.
    NeuroImage 01/2015; 5. DOI:10.1016/j.neuroimage.2015.01.007 · 6.13 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Isolated corpus callosum dysgenesis (CCD) is a congenital malformation which occurs during early development of the brain. In this study, we aimed to identify and describe its consequences beyond the lack of callosal fibres, on the morphology, microstructure and asymmetries of the main white matter bundles with diffusion imaging and fibre tractography. Seven children aged between 9 and 13 years old and seven age- and gender-matched control children were studied. First, we focused on bundles within the mesial region of the cerebral hemispheres: the corpus callosum, Probst bundles and cingulum which were selected using a conventional region-based approach. We demonstrated that the Probst bundles have a wider connectivity than the previously described rostrocaudal direction, and a microstructure rather distinct from the cingulum but relatively close to callosal remnant fibres. A sigmoid bundle was found in two partial ageneses. Second, the corticospinal tract, thalamic radiations and association bundles were extracted automatically via an atlas of adult white matter bundles to overcome bias resulting from a priori knowledge of the bundles’ anatomical morphology and trajectory. Despite the lack of callosal fibres and the colpocephaly observed in CCD, all major white matter bundles were identified with a relatively normal morphology, and preserved microstructure (i.e. fractional anisotropy, mean diffusivity) and asymmetries. Consequently the bundles’ organisation seems well conserved in brains with CCD. These results await further investigations with functional imaging before apprehending the cognition variability in children with isolated dysgenesis.
    Cortex 09/2014; 63. DOI:10.1016/j.cortex.2014.08.022 · 6.04 Impact Factor