Joulia-Ekaza, D and Cabello, G. The myostatin gene: physiology and pharmacological relevance. Curr Opin Pharmacol 7: 310-315

UFR Sciences de la Nature, Laboratoire de Physiologie Animale et Pharmacologie, Université d'Abobo-Adjamé, Abidjan, Côte d'Ivoire.
Current Opinion in Pharmacology (Impact Factor: 4.6). 07/2007; 7(3):310-5. DOI: 10.1016/j.coph.2006.11.011
Source: PubMed


Myostatin, which was cloned in 1997, is a potent inhibitor of skeletal muscle growth and member of the tumour growth factor-beta family. Disruption of the myostatin gene in mice induces a dramatic increase in muscle mass, caused by a combination of hypertrophy and hyperplasia. Natural mutations occurring in cattle were also associated with a significant increase in muscle mass and, recently, an inactivating myostatin mutation associated with the same phenotype was identified in humans. Studies into the molecular basis of this antimyogenic influence led to the conclusion that myostatin inhibits myoblast proliferation and differentiation through a classical tumour growth factor-beta pathway involving the activin receptor ActRIIB and Smads 2 and 3. Approaches that induce myostatin depletion or inactivation have led to a significant improvement in muscle regeneration processes, especially in degenerative diseases, through stimulation of satellite cell proliferation and differentiation. These promising data open the way to new therapeutic approaches in muscle diseases through targeting of the myostatin pathway.

1 Follower
27 Reads
  • Source
    • "On binding to ActRIIB, myostatin forms a complex with a second surface type I receptor, either activin receptor-like kinase 4 or 5, to stimulate the phosphorylation of Receptor Smad (R-Smad) and the Smad2/3 transcription factors in the cytoplasm. This leads to the assembly of Smad2/3 with Smad4 to form a heterodimer that can translocate to the nucleus and activate the transcription of target genes (Joulia-Ekaza and Cabello, 2007). Myostatin circulates in the blood in a latent complex with non-covalently bound propeptide at the N-terminus (Wolfman et al., 2003). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Recent advances in our understanding of the biology of muscle have led to new interest in the pharmacological treatment of muscle wasting. Loss of muscle mass and increased intramuscular fibrosis occur in both sarcopenia and muscular dystrophy. Several regulators (mammalian target of rapamycin, serum response factor, atrogin-1, myostatin, etc.) seem to modulate protein synthesis and degradation or transcription of muscle-specific genes during both sarcopenia and muscular dystrophy. This review provides an overview of the adaptive changes in several regulators of muscle mass in both sarcopenia and muscular dystrophy.
    Frontiers in Aging Neuroscience 08/2014; 6:230. DOI:10.3389/fnagi.2014.00230 · 4.00 Impact Factor
  • Source
    • "It leads to the accumulation of FoxO in the nucleus where it binds to the DNA and induces the transcription of E3 ubiquitin ligases MURF-1 and Atrogin-1. Smad3 and Smad4 possibly participate in FoxO signalling (adapted from [51, 84, 90, 101]) "
    [Show abstract] [Hide abstract]
    ABSTRACT: Myostatin is an extracellular cytokine mostly expressed in skeletal muscles and known to play a crucial role in the negative regulation of muscle mass. Upon the binding to activin type IIB receptor, myostatin can initiate several different signalling cascades resulting in the upregulation of the atrogenes and downregulation of the important for myogenesis genes. Muscle size is regulated via a complex interplay of myostatin signalling with the insulin-like growth factor 1/phosphatidylinositol 3-kinase/Akt pathway responsible for increase in protein synthesis in muscle. Therefore, the regulation of muscle weight is a process in which myostatin plays a central role but the mechanism of its action and signalling cascades are not fully understood. Myostatin upregulation was observed in the pathogenesis of muscle wasting during cachexia associated with different diseases (i.e. cancer, heart failure, HIV). Characterisation of myostatin signalling is therefore a perspective direction in the treatment development for cachexia. The current review covers the present knowledge about myostatin signalling pathways leading to muscle wasting and the state of therapy approaches via the regulation of myostatin and/or its downstream targets in cachexia.
    09/2011; 2(3):143-151. DOI:10.1007/s13539-011-0035-5
  • Source

Show more

Similar Publications