Oxidative stress and mitochondrial impairment can be separated from lipofuscin accumulation in aged human skeletal muscle.

Department for Molecular and Cellular Biology, Institute for Biomedical Aging Research of the Austrian Academy of Sciences, 6020 Innsbruck, Austria.
Aging Cell (Impact Factor: 5.94). 05/2007; 6(2):245-56. DOI: 10.1111/j.1474-9726.2007.00282.x
Source: PubMed

ABSTRACT According to the free radical theory of aging, reactive oxygen species (ROS) act as a driving force of the aging process, and it is generally believed that mitochondrial dysfunction is a major source of increased oxidative stress in tissues with high content of mitochondria, such as muscle or brain. However, recent experiments in mouse models of premature aging have questioned the role of mitochondrial ROS production in premature aging. To address the role of mitochondrial impairment and ROS production for aging in human muscles, we have analyzed mitochondrial properties in muscle fibres isolated from the vastus lateralis of young and elderly donors. Mitochondrial respiratory functions were addressed by high-resolution respirometry, and ROS production was analyzed by in situ staining with the redox-sensitive dye dihydroethidium. We found that aged human skeletal muscles contain fully functional mitochondria and that the level of ROS production is higher in young compared to aged muscle. Accordingly, we could not find any increase in oxidative modification of proteins in muscle from elderly donors. However, the accumulation of lipofuscin was identified as a robust marker of human muscle aging. The data support a model, where ROS-induced molecular damage is continuously removed, preventing the accumulation of dysfunctional mitochondria despite ongoing ROS production.

  • [Show abstract] [Hide abstract]
    ABSTRACT: Physical inactivity affects human skeletal muscle mitochondrial oxidative capacity but the influence of aging combined with physical inactivity is not known. This study investigates the effect of two weeks of immobilization followed by six weeks of supervised cycle training on muscle oxidative capacity in 17 young (23±1years) and 15 elderly (68±1years) healthy men. We applied high-resolution respirometry in permeabilized fibers from muscle biopsies at inclusion after immobilization and training. Furthermore, protein content of mitochondrial complexes I-V, mitochondrial heat shock protein 70 (mtHSP70) and voltage dependent anion channel (VDAC) were measured in skeletal muscle by Western blotting. The elderly men had lower content of complexes I-V and mtHSP70 but similar respiratory capacity and content of VDAC compared to the young. In both groups the respiratory capacity and protein content of VDAC, mtHSP70 and complexes I, II, IV and V decreased with immobilization and increased with retraining. Moreover, there was no overall difference in the response between the groups. When the intrinsic mitochondrial capacity was evaluated by normalizing respiration to citrate synthase activity, the respiratory differences with immobilization and training disappeared. In conclusion, aging is not associated with a decrease in muscle respiratory capacity in spite of lower complexes I-V and mtHSP70 protein content. Furthermore, immobilization decreased and aerobic training increased the respiratory capacity and protein contents of complexes I-V, mtHSP70 and VDAC similarly in the two groups. This suggests that inactivity and training alter mitochondrial biogenesis equally in young and elderly men.
    Experimental Gerontology 09/2014; 58:269-278. · 3.53 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Atrophy is a defining feature of aging skeletal muscle that contributes to progressive weakness and an increased risk of mobility impairment, falls, and physical frailty in very advanced age. Amongst the most frequently implicated mechanisms of aging muscle atrophy is mitochondrial dysfunction. Recent studies employing methods that are well-suited to interrogating intrinsic mitochondrial function find that mitochondrial respiration and reactive oxygen species emission changes are inconsistent between aging rat muscles undergoing atrophy and appear normal in human skeletal muscle from septuagenarian physically active subjects. On the other hand, a sensitization to permeability transition seems to be a general property of atrophying muscle with aging and this effect is even seen in atrophying muscle from physically active septuagenarian subjects. In addition to this intrinsic alteration in mitochondrial function, factors extrinsic to the mitochondria may also modulate mitochondrial function in aging muscle. In particular, recent evidence implicates oxidative stress in the aging milieu as a factor that depresses respiratory function in vivo (an effect that is not present ex vivo). Furthermore, in very advanced age, not only does muscle atrophy become more severe and clinically relevant in terms of its impact, but also there is evidence that this is driven by an accumulation of severely atrophied denervated myofibers. As denervation can itself modulate mitochondrial function and recruit mitochondrial-mediated atrophy pathways, future investigations need to address the degree to which skeletal muscle mitochondrial alterations in very advanced age are a consequence of denervation, rather than a primary organelle defect, to refine our understanding of the relevance of mitochondria as a therapeutic target at this more advanced age.
    Frontiers in Aging Neuroscience 09/2014; 6:211. · 2.84 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: To determine the effects of age and sex on in vivo mitochondrial function of distinct locomotory muscles, the tibialis anterior (TA) and medial gastrocnemius (MG), of young (Y; 24 ± 3 years) and older (O; 69 ± 4) men (M) and women (W) of similar overall physical activity (PA) was compared. In vivo mitochondrial function was measured using phosphorus magnetic resonance spectroscopy, and PA and physical function were measured in all subjects. Overall PA was similar among the groups, although O (n = 17) had fewer daily minutes of moderate-to-vigorous PA (p = 0.001), and slowed physical function (p < 0.05 for all variables), compared with Y (n = 17). In TA, oxidative capacity (V max; mM s(-1)) was higher in O than Y (p < 0.001; Y = 0.90 ± 0.12; O = 1.12 ± 0.18). There was no effect of age in MG (p = 0.5; Y = 0.91 ± 0.17; O = 0.96 ± 0.24), but women had higher oxidative capacity than men (p = 0.007; M = 0.84 ± 0.18; W = 1.03 ± 0.18). In vivo mitochondrial function was preserved in healthy O men and women, despite lower intensity PA and physical function in this group. The extent to which compensatory changes in gait may be responsible for this preservation warrants further investigation. Furthermore, women had higher oxidative capacity in the MG, but not the TA.
    Journal of the American Aging Association 10/2014; 36(5):9713. · 3.45 Impact Factor

Full-text (2 Sources)

Available from
Dec 4, 2014