Article

Validating in utero electroporation for the rapid analysis of gene regulatory elements in the murine telencephalon.

Institute of Maternal and Child Health, HBI, University of Calgary, Calgary, Canada.
Developmental Dynamics (Impact Factor: 2.59). 06/2007; 236(5):1273-86. DOI: 10.1002/dvdy.21126
Source: PubMed

ABSTRACT With the ultimate goal of understanding how genetic modules have evolved in the telencephalon, we set out to modernize the functional analysis of cross-species cis-regulatory elements in mouse. In utero electroporation is rapidly replacing transgenesis as the method of choice for gain- and loss-of-function studies in the murine telencephalon, but the application of this technique to the analysis of transcriptional regulation has yet to be fully explored and exploited. To empirically define the developmental stages required to target specific populations of neurons in the dorsal telencephalon, or pallium, which gives rise to the neocortex in mouse, we performed a temporal and spatial analysis of the migratory properties of electroporated versus birth-dated cells. Next, we compared the activities of two known Ngn2 enhancers via transgenesis and in utero electroporation, demonstrating that the latter technique more faithfully reports the endogenous telencephalic expression pattern observed in an Ngn2lacZ knock-in line. Finally, we used this approach to test the telencephalic activities of a series of deletion constructs comprised of the zebrafish ER81 upstream regulatory region, allowing us to identify a previously uncharacterized enhancer that displays cross-species activity in the murine piriform cortex and lateral neocortex, yet not in more medial domains of the forebrain. Taken together, our data supports the contention that in utero technology can be exploited to rapidly examine the architecture and evolution of pallial-specific cis-regulatory elements.

0 Bookmarks
 · 
102 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In the absence of external stimuli, the mammalian neocortex shows intrinsic network oscillations. These dynamics are characterized by translaminar assemblies of neurons whose activity synchronizes rhythmically in space and time. How different cortical layers influence the formation of these spontaneous cellular assemblies is poorly understood. We found that excitatory neurons in supragranular and infragranular layers have distinct roles in the regulation of intrinsic low-frequency oscillations in mice in vivo. Optogenetic activation of infragranular neurons generated network activity that resembled spontaneous events, whereas photoinhibition of these same neurons substantially attenuated slow ongoing dynamics. In contrast, light activation and inhibition of supragranular cells had modest effects on spontaneous slow activity. This study represents, to the best of our knowledge, the first causal demonstration that excitatory circuits located in distinct cortical layers differentially control spontaneous low-frequency dynamics.
    Nature Neuroscience 01/2013; 16(2):227–234. · 15.25 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Conditional mutagenesis using Cre recombinase expressed from tissue specific promoters facilitates analyses of gene function and cell lineage tracing. Here, we describe two novel dual-promoter-driven conditional mutagenesis systems designed for greater accuracy and optimal efficiency of recombination. Co-Driver employs a recombinase cascade of Dre and Dre-respondent Cre, which processes loxP-flanked alleles only when both recombinases are expressed in a predetermined temporal sequence. This unique property makes Co-Driver ideal for sequential lineage tracing studies aimed at unraveling the relationships between cellular precursors and mature cell types. Co-InCre was designed for highly efficient intersectional conditional transgenesis. It relies on highly active trans-splicing inteins and promoters with simultaneous transcriptional activity to reconstitute Cre recombinase from two inactive precursor fragments. By generating native Cre, Co-InCre attains recombination rates that exceed all other binary SSR systems evaluated in this study. Both Co-Driver and Co-InCre significantly extend the utility of existing Cre-responsive alleles.
    Nucleic Acids Research 01/2014; · 8.81 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Lysophosphatidic acid (LPA) is a lipid growth factor that exerts diverse biological effects through its cognate receptors (LPA1-LPA6). LPA1, which is predominantly expressed in the brain, plays a pivotal role in brain development. However, the role of LPA1 in neuronal migration has not yet been fully elucidated. Here, we delivered LPA1 to mouse cerebral cortex using in utero electroporation. We demonstrated that neuronal migration in the cerebral cortex was not affected by the overexpression of LPA1. Moreover, these results can be applied to the identification of the localization of LPA1. The subcellular localization of LPA1 was endogenously present in the perinuclear area, and overexpressed LPA1 was located in the plasma membrane. Furthermore, LPA1 in developing mouse cerebral cortex was mainly expressed in the ventricular zone and the cortical plate. In summary, the overexpression of LPA1 did not affect neuronal migration, and the protein expression of LPA1 was mainly located in the ventricular zone and cortical plate within the developing mouse cerebral cortex. These studies have provided information on the role of LPA1 in brain development and on the technical advantages of in utero electroporation.
    Molecules and cells. 07/2014;

Full-text (2 Sources)

View
70 Downloads
Available from
Jun 3, 2014