Article

Presynaptic Ca2+ entry is unchanged during hippocampal mossy fiber long-term potentiation.

Division of Cell Biology and Neurophysiology, Department of Neuroscience, Faculty of Medicine, Kobe University, Kobe, Hyogo 650-0017, Japan.
Journal of Neuroscience (Impact Factor: 6.91). 01/2003; 22(24):10524-8.
Source: PubMed

ABSTRACT The hippocampal mossy fiber (MF)-CA3 synapse exhibits NMDA receptor-independent long-term potentiation (LTP), which is expressed by presynaptic mechanisms leading to persistent enhancement of transmitter release. Recent studies have identified several molecules that may play an important role in MF-LTP. These include Rab3A, RIM1alpha, kainate autoreceptor, and hyperpolarization-activated cation channel (I(h)). However, the precise cellular expression mechanism remains to be determined because some studies noticed essential roles of release machinery molecules, whereas others suggested modulation of the ionotropic processes affecting Ca2+ entry into the presynaptic terminals. Using fluorescence recordings of presynaptic Ca2+ in hippocampal slices, here we demonstrated that MF-LTP is not accompanied by an increase in presynaptic Ca2+ influx during an action potential. Whole-cell recordings from CA3 neurons revealed long-lasting increases in mean frequency, but not mean amplitude, of miniature EPSCs after the high-frequency stimulation of MFs. These data indicate that the presynaptic expression mechanisms responsible for enhanced transmitter release during MF-LTP involve persistent modification of presynaptic molecular targets residing downstream of Ca2+ entry.

0 Bookmarks
 · 
76 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Long-term synaptic plasticity is a major cellular substrate for learning, memory, and behavioral adaptation. Although early examples of long-term synaptic plasticity described a mechanism by which postsynaptic signal transduction was potentiated, it is now apparent that there is a vast array of mechanisms for long-term synaptic plasticity that involve modifications to either or both the presynaptic terminal and postsynaptic site. In this article, we discuss current and evolving approaches to identify presynaptic mechanisms as well as discuss their limitations. We next provide examples of the diverse circuits in which presynaptic forms of long-term synaptic plasticity have been described and discuss the potential contribution this form of plasticity might add to circuit function. Finally, we examine the present evidence for the molecular pathways and cellular events underlying presynaptic long-term synaptic plasticity.
    Frontiers in Synaptic Neuroscience 01/2013; 5:8.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Voltage-gated potassium (Kv) channels are involved in action potential (AP) repolarization in excitable cells. Exogenous application of membrane-derived lipids, such as arachidonic acid (AA), regulates the gating of Kv channels. Whether membrane-derived lipids released under physiological conditions have an impact on neuronal coding through this mechanism is unknown. We show that AA released in an activity-dependent manner from postsynaptic hippocampal CA3 pyramidal cells acts as retrograde messenger, inducing a robust facilitation of mossy fiber (Mf) synaptic transmission over several minutes. AA acts by broadening presynaptic APs through the direct modulation of Kv channels. This form of short-term plasticity can be triggered when postsynaptic cell fires with physiologically relevant patterns and sets the threshold for the induction of the presynaptic form of long-term potentiation (LTP) at hippocampal Mf synapses. Hence, direct modulation of presynaptic Kv channels by activity-dependent release of lipids serves as a physiological mechanism for tuning synaptic transmission.
    Neuron 01/2014; · 15.77 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The distance between Ca(2+) channels and release sensors determines the speed and efficacy of synaptic transmission. Tight "nanodomain" channel-sensor coupling initiates transmitter release at synapses in the mature brain, whereas loose "microdomain" coupling appears restricted to early developmental stages. To probe the coupling configuration at a plastic synapse in the mature central nervous system, we performed paired recordings between mossy fiber terminals and CA3 pyramidal neurons in rat hippocampus. Millimolar concentrations of both the fast Ca(2+) chelator BAPTA [1,2-bis(2-aminophenoxy)ethane-N,N,N',N'-tetraacetic acid] and the slow chelator EGTA efficiently suppressed transmitter release, indicating loose coupling between Ca(2+) channels and release sensors. Loose coupling enabled the control of initial release probability by fast endogenous Ca(2+) buffers and the generation of facilitation by buffer saturation. Thus, loose coupling provides the molecular framework for presynaptic plasticity.
    Science 02/2014; 343(6171):665-70. · 31.20 Impact Factor

Full-text

Download
0 Downloads
Available from