Article

Phosphatidylinositol 3-kinase regulation of gastrin-releasing peptide-induced cell cycle progression in neuroblastoma cells.

Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 07/2007; 1770(6):927-32. DOI: 10.1016/j.bbagen.2007.02.002
Source: PubMed

ABSTRACT Gastrin-releasing peptide (GRP), the mammalian equivalent of bombesin (BBS), is an autocrine growth factor for neuroblastoma; its receptor is up-regulated in undifferentiated neuroblastomas. Phosphatidylinositol 3-kinase (PI3K) is a critical cell survival pathway; it is negatively regulated by the PTEN tumor suppressor gene. We have recently found that poorly differentiated neuroblastomas express decreased PTEN protein levels. Moreover, overexpression of the GRP receptor, a member of the G-protein coupled receptor family, down-regulates PTEN expression, resulting in increased neuroblastoma cell growth. Therefore, we sought to determine whether GRP or BBS activates PI3K in neuroblastoma cells (BE(2)-C, LAN-1, SK-N-SH). GRP or BBS treatment rapidly increased phosphorylation of Akt and GSK-3beta in neuroblastoma cells. Inhibition of GRP receptor, with antagonist GRP-H2756 or siRNA, attenuated BBS-induced phosphorylation of Akt. LY294002, a PI3K inhibitor, also abrogated BBS-stimulated phospho-Akt as well as its cell cycle targets. GRP increased G1/S phase progression in SK-N-SH cells. BBS-mediated BrdU incorporation was blocked by LY294002. Our findings identify PI3K as an important signaling pathway for GRP-mediated neuroblastoma cell growth. A novel therapy targeted at GRP/GRP receptor may prove to be an effective treatment option to inhibit PI3K in neuroblastomas.

0 Bookmarks
 · 
48 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gastrin-releasing peptide (GRP) and its receptor, GRP-R, are critically involved in neuroblastoma tumorigenesis; however, the molecular mechanisms and signaling pathways that are responsible for GRP/GRP-R-induced cell migration and invasion remain unclear. In this study, we sought to determine the cell signals involved in GRP/GRP-R-mediated neuroblastoma cell migration and invasion. Human neuroblastoma cell lines SK-N-SH, LAN-1, and IMR-32 were used for our study. Transwell migration and invasion assays were performed after GRP (10(-7) M) stimulation. The cDNA GEArray Microarray kit was used to determine GRP-R-induced gene expression changes. Protein and membrane expression of integrin subunits were confirmed by Western blotting and flow cytometry analysis. siRNA transfection was performed using Lipofectamine 2000. For scratch assay, a confluent monolayer of cells in 6-well plates were wounded with micropipette tip and observed microscopically at 24 to 72 h. GRP increased neuroblastoma cell migration and expressions of MMP-2 whereas the TIMP-1 level decreased. GRP-R overexpression stimulated SK-N-SH cell migration and upregulated integrin α2, α3, and β1 protein as well as mRNA expression. Targeted silencing of integrin β1 inhibited cell migration. GRP/GRP-R signaling contributes to neuroblastoma cell migration and invasion. Moreover, the integrin ß1 subunit critically regulates GRP-R-mediated neuroblastoma cell migration and invasion.
    Surgery 08/2013; 154(2):369-75. · 3.37 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Gastrin-releasing peptide (GRP) and its receptor (GRP-R) are highly expressed in undifferentiated neuroblastoma, and they play critical roles in oncogenesis. We previously reported that GRP activates the PI3K/AKT signaling pathway to promote DNA synthesis and cell cycle progression in neuroblastoma cells. Conversely, GRP-R silencing induces cell cycle arrest. Here, we speculated that GRP/GRP-R signaling induces neuroblastoma cell proliferation via regulation of cyclin-dependent kinase (CDK) inhibitors. Surprisingly, we found that GRP/GRP-R differentially induced expressions of p21 and p27. Silencing GRP/GRP-R decreased p21, but it increased p27 expressions in neuroblastoma cells. Furthermore, we found that the intracellular localization of p21 and p27 in the nuclear and cytoplasmic compartments, respectively. In addition, we found that GRP/GRP-R silencing increased the expression and accumulation of PTEN in the cytoplasm of neuroblastoma cells where it co-localized with p27, thus suggesting that p27 promotes the function of PTEN as a tumor suppressor by stabilizing PTEN in the cytoplasm. GRP/GRP-R regulation of CDK inhibitors and tumor suppressor PTEN may be critical for tumoriogenesis of neuroblastoma.
    Biochemical and Biophysical Research Communications 04/2013; · 2.28 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several studies showed that the orphan Bombesin Receptor Subtype-3 (BRS-3)) -member of the bombesin receptor family- has an important role in glucose homeostasis (vg.: BRS-3-KO mice developed mild obesity, and decreased levels of BRS-3 mRNA/protein have been described in muscle from obese (OB) and type 2 diabetic (T2D) patients). In this work, to gain insight into BRS-3 receptor cell signaling pathways, and its implication on glucose metabolism, primary cultured myocytes from normal subjects, OB or T2D patients were tested using high affinity ligand-[D-Tyr(6),β-Ala(11),Phe(13),Nle(14)]bombesin6-14-. In muscle cells from all metabolic conditions, the compound significantly increased not only MAPKs, p90RSK1, PKB and p70s6K phosphorylation levels, but also PI3K activity; moreover, it produced a dose-response stimulation of glycogen synthase a activity and glycogen synthesis. Myocytes from OB and T2D patients were more sensitive to the ligand than normal, and T2D cells even more than obese myocytes. These results widen the knowledge of human BRS-3 cell signaling pathways induced by a BRS-3 agonist, described its insulin-mimetic effects on glucose metabolism, showed the role of BRS-3 receptor in glucose homeostasis, and also propose the employing of BRS-3/ligand system, as participant in the obese and diabetic therapies.
    Peptides 11/2013; · 2.52 Impact Factor

Full-text (2 Sources)

View
2 Downloads
Available from
May 27, 2014