Article

Phosphatidylinositol 3-kinase regulation of gastrin-releasing peptide-induced cell cycle progression in neuroblastoma cells.

Department of Surgery, The University of Texas Medical Branch, 301 University Boulevard, Galveston, TX 77555, USA.
Biochimica et Biophysica Acta (Impact Factor: 4.66). 07/2007; 1770(6):927-32. DOI: 10.1016/j.bbagen.2007.02.002
Source: PubMed

ABSTRACT Gastrin-releasing peptide (GRP), the mammalian equivalent of bombesin (BBS), is an autocrine growth factor for neuroblastoma; its receptor is up-regulated in undifferentiated neuroblastomas. Phosphatidylinositol 3-kinase (PI3K) is a critical cell survival pathway; it is negatively regulated by the PTEN tumor suppressor gene. We have recently found that poorly differentiated neuroblastomas express decreased PTEN protein levels. Moreover, overexpression of the GRP receptor, a member of the G-protein coupled receptor family, down-regulates PTEN expression, resulting in increased neuroblastoma cell growth. Therefore, we sought to determine whether GRP or BBS activates PI3K in neuroblastoma cells (BE(2)-C, LAN-1, SK-N-SH). GRP or BBS treatment rapidly increased phosphorylation of Akt and GSK-3beta in neuroblastoma cells. Inhibition of GRP receptor, with antagonist GRP-H2756 or siRNA, attenuated BBS-induced phosphorylation of Akt. LY294002, a PI3K inhibitor, also abrogated BBS-stimulated phospho-Akt as well as its cell cycle targets. GRP increased G1/S phase progression in SK-N-SH cells. BBS-mediated BrdU incorporation was blocked by LY294002. Our findings identify PI3K as an important signaling pathway for GRP-mediated neuroblastoma cell growth. A novel therapy targeted at GRP/GRP receptor may prove to be an effective treatment option to inhibit PI3K in neuroblastomas.

0 Bookmarks
 · 
57 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Several studies showed that the orphan Bombesin Receptor Subtype-3 (BRS-3)) -member of the bombesin receptor family- has an important role in glucose homeostasis (vg.: BRS-3-KO mice developed mild obesity, and decreased levels of BRS-3 mRNA/protein have been described in muscle from obese (OB) and type 2 diabetic (T2D) patients). In this work, to gain insight into BRS-3 receptor cell signaling pathways, and its implication on glucose metabolism, primary cultured myocytes from normal subjects, OB or T2D patients were tested using high affinity ligand-[D-Tyr(6),β-Ala(11),Phe(13),Nle(14)]bombesin6-14-. In muscle cells from all metabolic conditions, the compound significantly increased not only MAPKs, p90RSK1, PKB and p70s6K phosphorylation levels, but also PI3K activity; moreover, it produced a dose-response stimulation of glycogen synthase a activity and glycogen synthesis. Myocytes from OB and T2D patients were more sensitive to the ligand than normal, and T2D cells even more than obese myocytes. These results widen the knowledge of human BRS-3 cell signaling pathways induced by a BRS-3 agonist, described its insulin-mimetic effects on glucose metabolism, showed the role of BRS-3 receptor in glucose homeostasis, and also propose the employing of BRS-3/ligand system, as participant in the obese and diabetic therapies.
    Peptides 11/2013; · 2.52 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously demonstrated the role of gastrin-releasing peptide (GRP) as an autocrine growth factor for neuroblastoma. Here, we report that GRP silencing regulates cell signaling involved in the invasion-metastasis cascade. Using a doxycycline inducible system, we demonstrate that GRP silencing decreased anchorage-independent growth, inhibited migration and neuroblastoma cell-mediated angiogenesis in vitro, and suppressed metastasis in vivo. Targeted inhibition of GRP decreased the mRNA levels of oncogenes responsible for neuroblastoma progression. We also identified PTEN/AKT signaling as a key mediator of the tumorigenic properties of GRP in neuroblastoma cells. Interestingly, PTEN overexpression decreased GRP-mediated migration and angiogenesis; a novel role for this, otherwise, understated tumor suppressor in neuroblastoma. Furthermore, activation of AKT (pAKT) positively correlated with neuroblastoma progression in an in vivo tumor-metastasis model. PTEN expression was slightly decreased in metastatic lesions. A similar phenomenon was observed in human neuroblastoma sections, where, early-stage localized tumors had a higher PTEN expression relative to pAKT; however, an inverse expression pattern was observed in liver lesions. Taken together, our results argue for a dual purpose of targeting GRP in neuroblastoma -1) decreasing expression of critical oncogenes involved in tumor progression, and 2) enhancing activation of tumor suppressor genes to treat aggressive, advanced-stage disease.
    PLoS ONE 01/2013; 8(9):e72570. · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Neuropeptides act as signaling molecules that regulate a range of aspects of brain function. Gastrin-releasing peptide (GRP) is a 27-amino acid mammalian neuropeptide, homolog of the amphibian peptide bombesin. GRP acts by binding to the GRP receptor (GRPR, also called BB2), a member of the G-protein coupled receptor (GPCR) superfamily. GRP produced by neurons in the central nervous system (CNS) plays a role in synaptic transmission by activating GRPRs located on postsynaptic membranes, influencing several aspects of brain function. Here we review the role of GRP/GRPR as a system mediating both stress responses and the formation and expression of memories for fearful events. GRPR signaling might integrate the processing of stress and fear with synaptic plasticity and memory, serving as an important component of the set of neurobiological systems underlying the enhancement of memory storage by aversive information.
    Neurobiology of Learning and Memory 08/2013; · 3.33 Impact Factor

Full-text (2 Sources)

Download
10 Downloads
Available from
May 27, 2014