Mice genetically deficient in neuromedin U receptor 2, but not neuromedin U receptor 1, have impaired nociceptive responses

Regeneron Pharmaceuticals, 777 Old Saw Mill River Road, Tarrytown, NY 10591, USA.
Pain (Impact Factor: 5.21). 09/2007; 130(3):267-78. DOI: 10.1016/j.pain.2007.01.036
Source: PubMed


Neuromedin U (NMU) has recently been reported to have a role in nociception and inflammation. To clarify the function of the two known NMU receptors, NMU receptor 1 (NMUR1) and NMU receptor 2 (NMUR2), during nociception and inflammation in vivo, we generated mice in which the genes for each receptor were independently deleted. Compared to wild type littermates, mice deficient in NMUR2 showed a reduced thermal nociceptive response in the hot plate, but not in the tail flick, test. In addition, the NMUR2 mutant mice showed a reduced behavioral response and a marked reduction in thermal hyperalgesia following capsaicin injection. NMUR2-deficient mice also showed an impaired pain response during the chronic, but not acute, phase of the formalin test. In contrast, NMUR1-deficient mice did not show any nociceptive differences compared to their wild type littermates in any of the behavioral tests used. We observed the same magnitude of inflammation in both lines of NMU receptor mutant mice compared to their wild type littermates after injection with complete Freund's adjuvant (CFA), suggesting no requirement for either receptor in this response. Thus, the pro-nociceptive effects of NMU in mice appear to be mediated through NMUR2, not NMUR1.

Download full-text


Available from: Mark Sleeman, Oct 05, 2015
36 Reads
  • Source
    • "NMUR1 is widely expressed, and Nmur1-deficient mice have impaired contraction of certain smooth muscle tissues in the gastrointestinal tract [33]. NMUR2 is expressed primarily in the central nervous system, and Nmur2-deficient mice have been shown to have impaired responses to pain in some assays; in contrast, these pain responses were normal in Nmur1-deficient mice [20]. With respect to inflammatory responses, inflammation induced by the injection of complete Freund's adjuvant was normal in mice lacking both receptors [20]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: Neuromedin U (NMU) is a neuropeptide with pro-inflammatory activity. The primary goal of this study was to determine if NMU promotes autoantibody-induced arthritis. Additional studies addressed the cellular source of NMU and sought to define the NMU receptor responsible for its pro-inflammatory effects. Serum containing arthritogenic autoantibodies from K/BxN mice was used to induce arthritis in mice genetically lacking NMU. Parallel experiments examined whether NMU deficiency impacted the early mast-cell-dependent vascular leak response induced by these autoantibodies. Bone-marrow chimeric mice were generated to determine whether pro-inflammatory NMU is derived from hematopoietic cells or stromal cells. Mice lacking the known NMU receptors singly and in combination were used to determine susceptibility to serum-transferred arthritis and in vitro cellular responses to NMU. NMU-deficient mice developed less severe arthritis than control mice. Vascular leak was not affected by NMU deficiency. NMU expression by bone-marrow-derived cells mediated the pro-arthritogenic effect. Deficiency of all of the known NMU receptors, however, had no impact on arthritis severity and did not affect the ability of NMU to stimulate intracellular calcium flux. NMU-deficient mice are protected from developing autoantibody-induced inflammatory arthritis. NMU derived from hematopoietic cells, not neurons, promotes the development of autoantibody-induced inflammatory arthritis. This effect is mediated by a receptor other than the currently known NMU receptors.
    Arthritis research & therapy 02/2012; 14(1):R29. DOI:10.1186/ar3732 · 3.75 Impact Factor
  • Source
    • "One that stands out is neuromedin U (NMU) which has been shown to have an emerging physiological role in nociception upon binding to the NMU receptor 2 [40]. Mice deficient in NMUR2 displayed reduced thermal nociceptive responses in the hot plate test, decreased thermal hyperalgesia following capsaicin injection and reduced the late phase response in the formalin test [41]. In other studies, NMU inhibited inflammation-mediated memory impairment and neuronal cell-death in rodents [42]. "
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously used the rat 4 day Complete Freund's Adjuvant (CFA) model to screen compounds with potential to reduce osteoarthritic pain. The aim of this study was to identify genes altered in this model of osteoarthritic pain and use this information to infer analgesic potential of compounds based on their own gene expression profiles using the Connectivity Map approach. Using microarrays, we identified differentially expressed genes in L4 and L5 dorsal root ganglia (DRG) from rats that had received intraplantar CFA for 4 days compared to matched, untreated control animals. Analysis of these data indicated that the two groups were distinguishable by differences in genes important in immune responses, nerve growth and regeneration. This list of differentially expressed genes defined a "CFA signature". We used the Connectivity Map approach to identify pharmacologic agents in the Broad Institute Build02 database that had gene expression signatures that were inversely related ('negatively connected') with our CFA signature. To test the predictive nature of the Connectivity Map methodology, we tested phenoxybenzamine (an alpha adrenergic receptor antagonist) - one of the most negatively connected compounds identified in this database - for analgesic activity in the CFA model. Our results indicate that at 10 mg/kg, phenoxybenzamine demonstrated analgesia comparable to that of Naproxen in this model. Evaluation of phenoxybenzamine-induced analgesia in the current study lends support to the utility of the Connectivity Map approach for identifying compounds with analgesic properties in the CFA model.
    Molecular Pain 09/2010; 6(1):56. DOI:10.1186/1744-8069-6-56 · 3.65 Impact Factor
  • Source
    • "The effect of a high-fat diet on nociceptive behavioral responses was assessed via two acute thermal pain tests, the hotplate and tail-flick tests. These tests provided insight into nociceptive mechanisms generally believed to involve primarily supraspinal and spinal pathways, respectively [42]. The withdrawal latency for the hotplate test over the first 60 minutes of testing was significantly faster in LG mice and HG mice, compared with control mice (Figure 4a). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Obesity is a major risk factor for the development of osteoarthritis in both weight-bearing and nonweight-bearing joints. The mechanisms by which obesity influences the structural or symptomatic features of osteoarthritis are not well understood, but may include systemic inflammation associated with increased adiposity. In this study, we examined biomechanical, neurobehavioral, inflammatory, and osteoarthritic changes in C57BL/6J mice fed a high-fat diet. Female C57BL/6J mice were fed either a 10% kcal fat or a 45% kcal fat diet from 9 to 54 weeks of age. Longitudinal changes in musculoskeletal function and inflammation were compared with endpoint neurobehavioral and osteoarthritic disease states. Bivariate and multivariate analyses were conducted to determine independent associations with diet, percentage body fat, and knee osteoarthritis severity. We also examined healthy porcine cartilage explants treated with physiologic doses of leptin, alone or in combination with IL-1α and palmitic and oleic fatty acids, to determine the effects of leptin on cartilage extracellular matrix homeostasis. High susceptibility to dietary obesity was associated with increased osteoarthritic changes in the knee and impaired musculoskeletal force generation and motor function compared with controls. A high-fat diet also induced symptomatic characteristics of osteoarthritis, including hyperalgesia and anxiety-like behaviors. Controlling for the effects of diet and percentage body fat with a multivariate model revealed a significant association between knee osteoarthritis severity and serum levels of leptin, adiponectin, and IL-1α. Physiologic doses of leptin, in the presence or absence of IL-1α and fatty acids, did not substantially alter extracellular matrix homeostasis in healthy cartilage explants. These results indicate that diet-induced obesity increases the risk of symptomatic features of osteoarthritis through changes in musculoskeletal function and pain-related behaviors. Furthermore, the independent association of systemic adipokine levels with knee osteoarthritis severity supports a role for adipose-associated inflammation in the molecular pathogenesis of obesity-induced osteoarthritis. Physiologic levels of leptin do not alter extracellular matrix homeostasis in healthy cartilage, suggesting that leptin may be a secondary mediator of osteoarthritis pathogenesis.
    Arthritis research & therapy 07/2010; 12(4):R130. DOI:10.1186/ar3068 · 3.75 Impact Factor
Show more