T-box factors determine cardiac design.

Heart Failure Research Center, Department of Anatomy and Embryology, Academic Medical Center, Amsterdam, The Netherlands.
Cellular and Molecular Life Sciences CMLS (Impact Factor: 5.86). 04/2007; 64(6):646-60.
Source: PubMed

ABSTRACT The heart of higher vertebrates is a structurally complicated multi-chambered pump that contracts synchronously. For its proper function a number of distinct integrated components have to be generated, including force-generating compartments, unidirectional valves, septa and a system in charge of the initiation and coordinated propagation of the depolarizing impulse over the heart. Not surprisingly, a large number of regulating factors are involved in these processes that act in complex and intertwined pathways to regulate the activity of target genes responsible for morphogenesis and function. The finding that mutations in T-box transcription factor-encoding genes in humans lead to congenital heart defects has focused attention on the importance of this family of regulators in heart development. Functional and genetic analyses in a variety of divergent species has demonstrated the critical roles of multiple T-box factor gene family members, including Tbx11, -2, -3, -5, -18 and -20, in the patterning, recruitment, specification, differentiation and growth processes underlying formation and integration of the heart components. Insight into the roles of T-box factors in these processes will enhance our understanding of heart formation and the underlying molecular regulatory pathways.

1 Follower
  • [Show abstract] [Hide abstract]
    ABSTRACT: The coordinated contraction of the heart relies on the generation and conduction of the electrical impulse. Aberrations of the function of the cardiac conduction system have been associated with various arrhythmogenic disorders and increased risk of sudden cardiac death. The genetics underlying conduction system function have been investigated using functional studies and genome-wide association studies. Both methods point towards the involvement of ion channel genes and the transcription factors that govern their activity. A large fraction of disease- and trait-associated sequence variants lie within non-coding sequences, enriched with epigenetic marks indicative of regulatory DNA. Although sequence conservation as a result of functional constraint has been a useful property to identify transcriptional enhancers, this identification process has been advanced through the development of techniques such as ChIP-seq and chromatin conformation capture technologies. The role of variation in gene regulatory elements in the cardiac conduction system has recently been demonstrated by studies on enhancers of SCN5A/SCN10A and TBX5. In both studies, a region harbouring a functionally implicated single-nucleotide polymorphism was shown to drive reproducible cardiac expression in a reporter gene assay. Furthermore, the risk variant of the allele abrogated enhancer function in both cases. Functional studies on regulatory DNA will likely receive a boost through recent developments in genome modification technologies.
    Briefings in functional genomics 08/2013; DOI:10.1093/bfgp/elt031 · 3.43 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Author Summary A highly complex environment at the cell surface and in the space between cells is thought to modulate cell behavior. Heparan sulfate proteoglycans are cell surface and extracellular matrix molecules that are covalently linked to long chains of repeating sugar units called glycosaminoglycan chains. These chains can be subjected to rare modifications and they are believed to influence specific cell signaling events in a lineage specific fashion in what is called the “glycocode.” Here we explore the functions of one member of a family of enzymes, 3-O-sulfotransferases (3-OSTs) that catalyzes a rare modification (3-O-sulfation) of glycosaminoglycans in zebrafish. We show that knockdown of 3-OST-7 results in a very specific phenotype, including loss of cardiac ventricle contraction. Knockdown of other 3-OST family members did not result in the same phenotype, suggesting that distinct 3-OST family members have distinct functions in vertebrates and lending in vivo evidence for the glycocode hypothesis. Mechanistically, we found that cardiac contraction can be rescued by reducing the amount of endogenous BMP4, and can be blocked by increasing BMP signaling, suggesting that the glycocode generated by 3-OST-7 is necessary to constrain BMP signaling in the heart for normal cardiac contraction. Furthermore, we show that tropomyosin4 (tpm4) is downstream of 3-OST-7 function, indicating that Tpm4 is key in this pathway to building the sarcomere, the functional contraction unit of the cardiomyocyte.
    PLoS Biology 12/2013; 11(12):e1001727. DOI:10.1371/journal.pbio.1001727 · 11.77 Impact Factor
  • Source


Available from