High-throughput identification of genes promoting neuron formation and lineage choice in mouse embryonic stem cells.

Karolinska Institute, Cell and Developmental Biology, Box 285, Stockholm 17177, Sweden.
Stem Cells (Impact Factor: 7.13). 07/2007; 25(6):1539-45.
Source: PubMed

ABSTRACT The potential of embryonic stem cells to differentiate to all cell types makes them an attractive model for development and a potential source of cells for transplantation therapies. Candidate approaches have identified individual genes and proteins that promote the differentiation of embryonic stem cells to desired fates. Here, we describe a rapid large-scale screening strategy for the identification of genes that influence the pluripotency and differentiation of embryonic stem cells to specific fates, and we use this approach to identify genes that induce neuron formation. The power of the strategy is validated by the fact that, of the 15 genes that resulted in the largest increase in neuron number, 8 have previously been implicated in neuronal differentiation or survival, whereas 7 represent novel genes or known genes not previously implicated in neuronal development. This is a simple, fast, and generally applicable strategy for the identification of genes promoting the formation of any specific cell type from embryonic stem cells. Disclosure of potential conflicts of interest is found at the end of this article.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: High-throughput screening (HTS) is a technology widely used for early stages of drug discovery in pharmaceutical and biotechnology industries. Recent hardware and software improvements have enabled HTS to be used in combination with subcellular resolution microscopy, resulting in cell image-based HTS, called high-content screening (HCS). HCS allows the acquisition of deeper knowledge at a single-cell level such that more complex biological systems can be studied in a high-throughput manner. The technique is particularly well-suited for stem cell research and drug discovery, which almost inevitably require single-cell resolutions for the detection of rare phenotypes in heterogeneous cultures. With growing availability of facilities, instruments, and reagent libraries, small-to-moderate scale HCS can now be carried out in regular academic labs. We envision that the HCS technique will play an increasing role in both basic mechanism study and early-stage drug discovery on stem cells. Here, we review the development of HCS technique and its past application on stem cells and discuss possible future developments.
    Stem Cells 07/2012; 30(9):1800-7. · 7.70 Impact Factor
  • European Journal of Pain Supplements 09/2011; 5(1):253-254.
  • [Show abstract] [Hide abstract]
    ABSTRACT: In order for the pharmaceutical industry to maintain a constant flow of novel drugs and therapeutics into the clinic, compounds must be thoroughly validated for safety and efficacy in multiple biological and biochemical systems. Pluripotent stem cells, because of their ability to develop into any cell type in the body and recapitulate human disease, may be an important cellular system to add to the drug development repertoire. This review will discuss some of the benefits of using pluripotent stem cells for drug discovery and safety studies as well as some of the recent applications of stem cells in drug screening studies. We will also address some of the hurdles that need to be overcome in order to make stem cell-based approaches an efficient and effective tool in the quest to produce clinically successful drug compounds.
    Advanced drug delivery reviews 12/2013; · 11.96 Impact Factor


Available from
Nov 4, 2014