Article

Drosophila eiger mutants are sensitive to extracellular pathogens

Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America.
PLoS Pathogens (Impact Factor: 8.06). 04/2007; 3(3):e41. DOI: 10.1371/journal.ppat.0030041
Source: PubMed

ABSTRACT We showed previously that eiger, the Drosophila tumor necrosis factor homolog, contributes to the pathology induced by infection with Salmonella typhimurium. We were curious whether eiger is always detrimental in the context of infection or if it plays a role in fighting some types of microbes. We challenged wild-type and eiger mutant flies with a collection of facultative intracellular and extracellular pathogens, including a fungus and Gram-positive and Gram-negative bacteria. The response of eiger mutants divided these microbes into two groups: eiger mutants are immunocompromised with respect to extracellular pathogens but show no change or reduced sensitivity to facultative intracellular pathogens. Hence, eiger helps fight infections but also can cause pathology. We propose that eiger activates the cellular immune response of the fly to aid clearance of extracellular pathogens. Intracellular pathogens, which can already defeat professional phagocytes, are unaffected by eiger.

0 Bookmarks
 · 
130 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Intestinal inflammation is widely recognized as a pivotal player in health and disease. Defined cytologically as the infiltration of leukocytes in the lamina propria layer of the intestine, it can damage the epithelium and, on a chronic basis, induce inflammatory bowel disease and potentially cancer. The current view thus dictates that blood cell infiltration is the instigator of intestinal inflammation and tumor-promoting inflammation. This is based partially on work in humans and mice showing that intestinal damage during microbially mediated inflammation activates phagocytic cells and lymphocytes that secrete inflammatory signals promoting tissue damage and tumorigenesis. Nevertheless, extensive parallel work in the Drosophila midgut shows that intestinal epithelium damage induces inflammatory signals and growth factors acting mainly in a paracrine manner to induce intestinal stem cell proliferation and tumor formation when genetically predisposed. This is accomplished without any apparent need to involve Drosophila hemocytes. Therefore, recent work on Drosophila host defense to infection by expanding its main focus on systemic immunity signaling pathways to include the study of organ homeostasis in health and disease shapes a new notion that epithelially emanating cytokines and growth factors can directly act on the intestinal stem cell niche to promote "regenerative inflammation" and potentially cancer.
  • [Show abstract] [Hide abstract]
    ABSTRACT: Dugesia japonica planarian flatworms are naturally exposed to various microbes but typically survive this challenge. We show that planarians eliminate bacteria pathogenic to Homo sapiens, Caenorhabditis elegans, and/or Drosophila melanogaster and thus represent a model to identify innate resistance mechanisms. Whole-transcriptome analysis coupled with RNAi screening of worms infected with Staphylococcus aureus or Legionella pneumophila identified 18 resistance genes with nine human orthologs, of which we examined the function of MORN2. Human MORN2 facilitates phagocytosis-mediated restriction of Mycobacterium tuberculosis, L. pneumophila, and S. aureus in macrophages. MORN2 promotes the recruitment of LC3, an autophagy protein also involved in phagocytosis, to M. tuberculosis-containing phagosomes and subsequent maturation to degradative phagolysosomes. MORN2-driven trafficking of M. tuberculosis to single-membrane, LC3-positive compartments requires autophagy-related proteins Atg5 and Beclin-1, but not Ulk-1 and Atg13, highlighting the importance of MORN2 in LC3-associated phagocytosis. These findings underscore the value of studying planarian defenses to identify immune factors.
    Cell Host & Microbe 09/2014; 16(3):338-350. DOI:10.1016/j.chom.2014.08.002 · 12.19 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The TNF and TNFR superfamilies of proteins are conserved throughout evolution. The first invertebrate orthologs of TNF and TNFR, Eiger and Wengen, were identified in Drosophila, which enabled us to take advantage of its powerful genetics. Indeed, genetic studies on Eiger in the last decade have discovered their signaling mechanisms through activation of the JNK pathway and unveiled the role of Eiger-JNK signaling in a variety of cellular and tissue processes such as cell death, cell proliferation, tissue growth regulation, host defense, pain sensitization, and canalization. In this review, we will describe the in vivo signaling of Eiger and its physiological roles in fly development and homeostasis, and will discuss the evolution of the TNF/TNFR systems.
    Seminars in Immunology 06/2014; DOI:10.1016/j.smim.2014.05.003 · 5.93 Impact Factor

Full-text (3 Sources)

Download
62 Downloads
Available from
May 20, 2014