Article

Drosophila eiger mutants are sensitive to extracellular pathogens

Department of Microbiology and Immunology, Stanford University, Stanford, California, United States of America.
PLoS Pathogens (Impact Factor: 8.06). 04/2007; 3(3):e41. DOI: 10.1371/journal.ppat.0030041
Source: PubMed

ABSTRACT We showed previously that eiger, the Drosophila tumor necrosis factor homolog, contributes to the pathology induced by infection with Salmonella typhimurium. We were curious whether eiger is always detrimental in the context of infection or if it plays a role in fighting some types of microbes. We challenged wild-type and eiger mutant flies with a collection of facultative intracellular and extracellular pathogens, including a fungus and Gram-positive and Gram-negative bacteria. The response of eiger mutants divided these microbes into two groups: eiger mutants are immunocompromised with respect to extracellular pathogens but show no change or reduced sensitivity to facultative intracellular pathogens. Hence, eiger helps fight infections but also can cause pathology. We propose that eiger activates the cellular immune response of the fly to aid clearance of extracellular pathogens. Intracellular pathogens, which can already defeat professional phagocytes, are unaffected by eiger.

Download full-text

Full-text

Available from: Marc S Dionne, Jun 25, 2015
0 Followers
 · 
141 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Despite the existence of various virulence factors in the Enterococcus genus, enterococcal virulence is still a debated issue. A main consideration is the detection of the same virulence genes in strains isolated from nosocomial or community-acquired infections, and from food products. The goal of this study was to evaluate the roles of two well-characterized enterococcal virulence factors, Fsr and gelatinase, in the potential virulence of Enterococcus faecalis food strains. Virulence of unrelated Enterococcus isolates, including dairy strains carrying fsr and gelE operons, was compared in the Galleria mellonella insect model. E. faecalis dairy strains were able to kill larvae and were as virulent as strain OG1RF, one of the most widely used for virulence studies. In contrast, Enterococcus durans and Enterococcus faecium strains were avirulent or poorly virulent for G. mellonella. To evaluate the role of fsrB and gelE in virulence of E. faecalis dairy strains, both genes were deleted independently in two strains. The Delta fsrB and Delta gelE deletion mutants both produced a gelatinase-negative phenotype. Although both mutations significantly attenuated virulence in G. mellonella, the Delta fsrB strains were more strongly attenuated. These results agree with previous findings suggesting the involvement of fsrB in the control of other cell functions relevant to virulence. Our work demonstrates that the presence of functional fsrB, and to a lesser extent gelE, in dairy enterococci should be considered with caution.
    Microbiology 09/2009; 155(Pt 11):3564-71. DOI:10.1099/mic.0.030775-0 · 2.84 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Hosts employ a combination of two distinct yet compatible strategies to defend themselves against parasites: resistance, the ability to limit parasite burden, and tolerance, the ability to limit damage caused by a given parasite burden. Animals typically exhibit considerable genetic variation in resistance to a variety of pathogens; however, little is known about whether animals can evolve tolerance. Using a bacterial infection model in Drosophila, we uncovered a p38 MAP kinase-mediated mechanism of tolerance to intracellular bacterial infection as measured by the extent to which the host's survival rate increased or was maintained despite increasing bacterial burden. This increased survival was conferred primarily by a tolerance strategy whereby p38-dependent phagocytic encapsulation of bacteria resulted in enlarged phagocytes that trap bacteria. These results suggest that phagocytic responses are not restricted to resistance mechanisms but can also be applied to tolerance strategies for intracellular encapsulation of pathogens during the invertebrate immune response.
    Cell host & microbe 09/2009; 6(3):244-52. DOI:10.1016/j.chom.2009.07.010 · 12.19 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We previously demonstrated that Vibrio cholerae is able to colonize the intestine of the fly to produce a lethal infection. Here we present the results of a genetic screen undertaken to identify factors that alter susceptibility of the fly to intestinal V. cholerae infection. In this model of infection, the Eiger/Wengen signalling pathway protects the fly against infection. Furthermore, mutations within the IMD signalling pathway increase resistance to intestinal V. cholerae infection and increase programmed cell death within the intestinal epithelium during infection. We propose that programmed cell death protects the intestinal epithelium against V. cholerae infection and therefore that the fly may serve as a useful model in which to study modulation of intestinal epithelial cell survival by commensal and pathogenic intestinal bacteria as well as the pathological processes leading to erosion of the intestinal epithelium and intestinal malignancy.
    Cellular Microbiology 12/2008; 11(3):461-74. DOI:10.1111/j.1462-5822.2008.01267.x · 4.82 Impact Factor