Teaching dolichol-linked oligosaccharides more tricks with alternatives to metabolic radiolabeling.

Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA.
Glycobiology (Impact Factor: 3.75). 09/2007; 17(8):75R-85R. DOI: 10.1093/glycob/cwm029
Source: PubMed

ABSTRACT The dolichol cycle involves synthesis of the lipid-linked oligosaccharide (LLO) Glc(3)Man(9)GlcNAc(2)-P-P-dolichol (G(3)M(9)Gn(2)-P-P-Dol), transfer of G(3)M(9)Gn(2) to asparaginyl residues of nascent endoplasmic reticulum (ER) polypeptides by oligosaccharyltransferase (OT), and recycling of the resultant Dol-P-P to Dol-P for new rounds of LLO synthesis. The importance of the dolichol cycle in secretory and membrane protein biosynthesis, ER function, and human genetic disease is now widely accepted. Elucidation of the fundamental properties of the dolichol cycle in intact cells was achieved through the use of radioactive sugar precursors, typically [(3)H]-labeled or [(14)C]-labeled d-mannose, d-galactose, or d-glucosamine. However, difficulties were encountered with cells or tissues not amenable to metabolic labeling, or in experiments influenced by isotope dilution, variable rates of LLO turnover, or special culture conditions required for the use of radioactive sugars. This article will review recently developed alternatives for LLO analysis that do not rely upon metabolic labeling with radioactive precursors, and thereby circumvent these problems. New information revealed by these methods with regard to regulation, genetic disorders, and evolution of the dolichol cycle, as well as caveats of radiolabeling techniques, will be discussed.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: From Artemisia annua L., a new oxidoreductase (Red 1) was cloned, sequenced and functionally characterized. Through bioinformatics, heterologous protein expression and enzyme substrate conversion assays, the elucidation of the enzymatic capacities of Red1 was achieved. Red1 acts on monoterpenoids, and in particular functions as a menthone:neomenthol oxidoreductase. The kinetic parameter k(cat)/K(m) was determined to be 939-fold more efficient for the reduction of (-)-menthone to (+)-neomenthol than results previously reported for the menthone:neomenthol reductase from Mentha x piperita. Based on its kinetic properties, the possible use of Red1 in biological crop protection is discussed.
    Plant and Cell Physiology 07/2010; 51(7):1219-28. DOI:10.1093/pcp/pcq073 · 4.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Asparagine-linked glycosylation is an endoplasmic reticulum co- and post- translational modification that enables the transit and function of receptor tyrosine kinase (RTK) glycoproteins. To gain insight into the regulatory role of glycosylation enzymes on RTK function, we investigated shRNA and siRNA knockdown of mannose phosphate isomerase (MPI), an enzyme required for mature glycan precursor biosynthesis. Loss of MPI activity reduced phosphorylation of FGFR family receptors in U-251 and SKMG-3 malignant glioma cell lines and also resulted in significant decreases in FRS2, Akt, and MAPK signaling. However, MPI knockdown did not affect ligand-induced activation or signaling of EGFR or MET RTKs, suggesting that FGFRs are more susceptible to MPI inhibition. The reductions in FGFR signaling were not caused by loss of FGF ligands or receptors, but instead were caused by interference with receptor dimerization. Investigations into the cellular consequences of MPI knockdown showed that cellular programs driven by FGFR signaling, and integral to the clinical progression of malignant glioma, were impaired. In addition to a blockade of cellular migration, MPI knockdown also significantly reduced glioma cell clonogenic survival following ionizing radiation. Therefore our results suggest that targeted inhibition of enzymes required for cell surface receptor glycosylation can be manipulated to produce discrete and limited consequences for critical client glycoproteins expressed by tumor cells. Furthermore, this work identifies MPI as a potential enzymatic target for disrupting cell surface receptor-dependent survival signaling and as a novel approach for therapeutic radiosensitization.
    PLoS ONE 10/2014; 9(10):e110345. DOI:10.1371/journal.pone.0110345 · 3.53 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: When the homeostasis of endoplasmic reticulum (ER) is disturbed by the accumulation of unfolded or misfolded proteins, a series of signaling responses collectively called the unfolded protein response (UPR) is triggered. UPR transducers IRE1, PERK, ATF6, and UPR-responsive genes such as GRP78/BiP, ERAD genes such as EDEM, and synthesis of the protein N-linked glycosylation donor lipid-linked oligosaccharides (LLOs) are mobilized. This chapter provides methods used in our laboratory to quantitatively measure the accumulation of mRNAs encoding BiP and EDEM, splicing of XBP1, cleavage of ATF6, inhibition of protein synthesis by PERK, and extension of LLOs under control and stress conditions.
    Methods in enzymology 01/2011; 491(4):293-308. DOI:10.1016/B978-0-12-385928-0.00016-X · 2.19 Impact Factor