Article

Teaching dolichol-linked oligosaccharides more tricks with alternatives to metabolic radiolabeling.

Department of Pharmacology, University of Texas Southwestern Medical Center, 6001 Forest Park Road, Dallas, TX 75390-9041, USA.
Glycobiology (Impact Factor: 3.14). 09/2007; 17(8):75R-85R. DOI: 10.1093/glycob/cwm029
Source: PubMed

ABSTRACT The dolichol cycle involves synthesis of the lipid-linked oligosaccharide (LLO) Glc(3)Man(9)GlcNAc(2)-P-P-dolichol (G(3)M(9)Gn(2)-P-P-Dol), transfer of G(3)M(9)Gn(2) to asparaginyl residues of nascent endoplasmic reticulum (ER) polypeptides by oligosaccharyltransferase (OT), and recycling of the resultant Dol-P-P to Dol-P for new rounds of LLO synthesis. The importance of the dolichol cycle in secretory and membrane protein biosynthesis, ER function, and human genetic disease is now widely accepted. Elucidation of the fundamental properties of the dolichol cycle in intact cells was achieved through the use of radioactive sugar precursors, typically [(3)H]-labeled or [(14)C]-labeled d-mannose, d-galactose, or d-glucosamine. However, difficulties were encountered with cells or tissues not amenable to metabolic labeling, or in experiments influenced by isotope dilution, variable rates of LLO turnover, or special culture conditions required for the use of radioactive sugars. This article will review recently developed alternatives for LLO analysis that do not rely upon metabolic labeling with radioactive precursors, and thereby circumvent these problems. New information revealed by these methods with regard to regulation, genetic disorders, and evolution of the dolichol cycle, as well as caveats of radiolabeling techniques, will be discussed.

0 Followers
 · 
77 Views
  • Source
    • "These data showed that MEFs contain the M6P-responsive component(s) needed for LLO cleavage, and that ER stress can increase M6P in intact MEFs in the required concentration range. To directly assess whether the elevated M6P might have caused LLO cleavage and therefore provide an explanation for the generation of Dol-P (Figures 2 and 4A) in intact stressed MEFs, we used a variation of the FACE technique in which the glycan portions of LLOs were released from the lipid carrier with mild acid, and then labeled with the fluorophore 7-amino-1,3-naphthalenedisulfonic acid (ANDS) (Gao and Lehrman, 2006;Lehrman, 2007). Interestingly, both DTT and TG stresses resulted in a statistically significant suppression of G 3 M 9 Gn 2 -P-P-Dol levels in PERK -/- MEFs (Figure 4B). "
    [Show abstract] [Hide abstract]
    ABSTRACT: Mannose-6-phosphate (M6P) is an essential precursor for mannosyl glycoconjugates, including lipid-linked oligosaccharides (LLO; glucose(3)mannose(9)GlcNAc(2)-P-P-dolichol) used for protein N-glycosylation. In permeabilized mammalian cells, M6P also causes specific LLO cleavage. However, the context and purpose of this paradoxical reaction are unknown. In this study, we used intact mouse embryonic fibroblasts to show that endoplasmic reticulum (ER) stress elevates M6P concentrations, leading to cleavage of the LLO pyrophosphate linkage with recovery of its lipid and lumenal glycan components. We demonstrate that this M6P originates from glycogen, with glycogenolysis activated by the kinase domain of the stress sensor IRE1-α. The apparent futility of M6P causing destruction of its LLO product was resolved by experiments with another stress sensor, PKR-like ER kinase (PERK), which attenuates translation. PERK's reduction of N-glycoprotein synthesis (which consumes LLOs) stabilized steady-state LLO levels despite continuous LLO destruction. However, infection with herpes simplex virus 1, an N-glycoprotein-bearing pathogen that impairs PERK signaling, not only caused LLO destruction but depleted LLO levels as well. In conclusion, the common metabolite M6P is also part of a novel mammalian stress-signaling pathway, responding to viral stress by depleting host LLOs required for N-glycosylation of virus-associated polypeptides. Apparently conserved throughout evolution, LLO destruction may be a response to a variety of environmental stresses.
    Molecular biology of the cell 07/2011; 22(17):2994-3009. DOI:10.1091/mbc.E11-04-0286 · 5.98 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: N-glycosylation of proteins is recognized as one of the most common post-translational modifications. Until recently it was believed that N-glycosylation occurred exclusively in eukaryotes before the discovery of the general protein glycosylation pathway (Pgl) in Campylobacter jejuni. To date, most techniques to analyze lipid-linked oligosaccharides (LLOs) of these pathways involve the use of radiolabels and chromatographic separation. Technologies capable of characterizing eukaryotic and the newly described bacterial N-glycosylation systems from biologically relevant samples in a quick, accurate, and cost-effective manner are needed. In this paper a new glycomics strategy based on lectin-affinity capture was devised and validated on the C. jejuni N-glycan pathway and the engineered Escherichia coli strains expressing the functional C. jejuni pathway. The lipid-linked oligosaccharide intermediates of the Pgl pathway were then enriched using SBA-agarose affinity-capture and examined by capillary electrophoresis-mass spectrometry (CE-MS). We demonstrate that this method is capable of detecting low levels of LLOs, the sugars are indeed assembled on undecaprenylpyrophosphate, and structural information for expected and unexpected LLOs can be obtained without further sample manipulation. Furthermore, CE-MS analyses of C. jejuni and the E. coli "glyco-factories" showed striking differences in the assembly and control of N-glycan biosynthesis.
    Analytical Chemistry 08/2008; 80(14):5468-75. DOI:10.1021/ac800079r · 5.83 Impact Factor
Show more

Preview

Download
0 Downloads