Myelin-specific regulatory T cells accumulate in the CNS but fail to control autoimmune inflammation.

Center for Neurologic Diseases, Brigham and Women's Hospital, Harvard Medical School, Boston, Massachusetts 02115, USA.
Nature Medicine (Impact Factor: 28.05). 05/2007; 13(4):423-31. DOI: 10.1038/nm1564
Source: PubMed

ABSTRACT Treatment with ex vivo-generated regulatory T cells (T-reg) has been regarded as a potentially attractive therapeutic approach for autoimmune diseases. However, the dynamics and function of T-reg in autoimmunity are not well understood. Thus, we developed Foxp3gfp knock-in (Foxp3gfp.KI) mice and myelin oligodendrocyte glycoprotein (MOG)(35-55)/IA(b) (MHC class II) tetramers to track autoantigen-specific effector T cells (T-eff) and T-reg in vivo during experimental autoimmune encephalomyelitis (EAE), an animal model for multiple sclerosis. MOG tetramer-reactive, Foxp3(+) T-reg expanded in the peripheral lymphoid compartment and readily accumulated in the central nervous system (CNS), but did not prevent the onset of disease. Foxp3(+) T cells isolated from the CNS were effective in suppressing naive MOG-specific T cells, but failed to control CNS-derived encephalitogenic T-eff that secreted interleukin (IL)-6 and tumor necrosis factor (TNF). Our data suggest that in order for CD4(+)Foxp3(+) T-reg to effectively control autoimmune reactions in the target organ, it may also be necessary to control tissue inflammation.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Regulatory T (Treg) and T helper 17 (Th17) cells were recently proposed to be reciprocally regulated during differentiation. To understand the underlying mechanisms, we utilized a Th17 reporter mouse with a red fluorescent protein (RFP) sequence inserted into the interleukin-17F (IL-17F) gene. Using IL-17F-RFP together with a Foxp3 reporter, we found that the development of Th17 and Foxp3(+) Treg cells was associated in immune responses. Although TGF-beta receptor I signaling was required for both Foxp3 and IL-17 induction, SMAD4 was only involved in Foxp3 upregulation. Foxp3 inhibited Th17 differentiation by antagonizing the function of the transcription factors RORgammat and ROR*. In contrast, IL-6 overcame this suppressive effect of Foxp3 and, together with IL-1, induced genetic reprogramming in Foxp3(+) Treg cells. STAT3 regulated Foxp3 downregulation, whereas STAT3, RORgamma, and ROR* were required for IL-17 expression in Treg cells. Our data demonstrate molecular antagonism and plasticity of Treg and Th17 cell programs.
    Immunity 08/2008; 29(1):44-56. DOI:10.1016/j.immuni.2008.05.007 · 19.75 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In accordance with a high degree of spatial organization in the central nervous system (CNS), most CNS diseases display a regional distribution. Although microglia have been established as key players in various CNS diseases, it is not yet clear whether microglia display region-specific properties. Therefore, this study aimed to evaluate the existence of distinct microglia phenotypes in various regions of the healthy, adult mouse CNS. Using ex vivo flow cytometric analysis surface expression of CD11b, CD40, CD45, CD80, CD86, F4/80, TREM-2b, MHCII, CXCR3, CCR9, and CCR7 were analyzed. Most of these immunoregulatory markers were found on microglia and showed significant region-specific differences in expression levels. These findings considerably corroborate the existence of immunological diversity among microglia in the healthy, unchallenged CNS of adult mice.
    Glia 06/2008; 56(8):888-94. DOI:10.1002/glia.20663 · 5.47 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The dynamics of CD4(+) effector T cells (Teff cells) and CD4(+)Foxp3(+) regulatory T cells (Treg cells) during diabetes progression in nonobese diabetic mice was investigated to determine whether an imbalance of Treg cells and Teff cells contributes to the development of type 1 diabetes. Our results demonstrated a progressive decrease in the Treg cell:Teff cell ratio in inflamed islets but not in pancreatic lymph nodes. Intra-islet Treg cells expressed reduced amounts of CD25 and Bcl-2, suggesting that their decline was due to increased apoptosis. Additionally, administration of low-dose interleukin-2 (IL-2) promoted Treg cell survival and protected mice from developing diabetes. Together, these results suggest intra-islet Treg cell dysfunction secondary to defective IL-2 production is a root cause of the progressive breakdown of self-tolerance and the development of diabetes in nonobese diabetic mice.
    Immunity 06/2008; 28(5):687-97. DOI:10.1016/j.immuni.2008.03.016 · 19.75 Impact Factor