Surflex-Dock 2.1: robust performance from ligand energetic modeling, ring flexibility, and knowledge-based search.

Department of Biopharmaceutical Sciences, UCSF Cancer Research Institute, University of California-San Francisco, Box 0128, San Francisco, CA 94143-0128, USA.
Journal of Computer-Aided Molecular Design (Impact Factor: 2.78). 06/2007; 21(5):281-306. DOI: 10.1007/s10822-007-9114-2
Source: PubMed

ABSTRACT The Surflex flexible molecular docking method has been generalized and extended in two primary areas related to the search component of docking. First, incorporation of a small-molecule force-field extends the search into Cartesian coordinates constrained by internal ligand energetics. Whereas previous versions searched only the alignment and acyclic torsional space of the ligand, the new approach supports dynamic ring flexibility and all-atom optimization of docked ligand poses. Second, knowledge of well established molecular interactions between ligand fragments and a target protein can be directly exploited to guide the search process. This offers advantages in some cases over the search strategy where ligand alignment is guided solely by a "protomol" (a pre-computed molecular representation of an idealized ligand). Results are presented on both docking accuracy and screening utility using multiple publicly available benchmark data sets that place Surflex's performance in the context of other molecular docking methods. In terms of docking accuracy, Surflex-Dock 2.1 performs as well as the best available methods. In the area of screening utility, Surflex's performance is extremely robust, and it is clearly superior to other methods within the set of cases for which comparative data are available, with roughly double the screening enrichment performance.

1 Follower
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Polyphenol oxidase(PPO) is widely known to be involved in enzymatic browning reaction in many fruits and vegetables including lotus rhizome with different catalytic mechanisms. In this study, the inhibitory effect and mechanisms of action of ascorbic acid (AA) on the lotus rhizome PPO were investigated using inhibition kinetics and computational simulation. The lotus rhizome PPO was extracted with PBS (pH 7.0), fractionated with ammonium sulphate, concentrated, and purified with DEAE-52(2.6×30 cm) and Sephadex G-75(2.6×60 cm) chromatography. The active fractions were pooled and the PPO activity was determined to be 2627.36Units/mg. AA exhibited inhibition on lotus rhizome PPO with residual activity of 13.79% at concentration of 0.08mM and IC50 of 0.045mM. Kinetic analyses determined by Lineweaver-Burk plots showed that ascorbic acid was reversible and competitive inhibitor to the enzyme. The 3D structure of the lotus rhizome PPO was simulated by SWISS-MODEL program and molecular docking was performed between PPO and its ligands (catehol and AA) by SYBYL-X 2.0. Simulation results showed that AA and catechol compete with the binding site of the PPO active center for its stronger affinity with the enzyme. In conclusion, the AA was established as a competitive inhibitor of lotus rhizome PPO, which provides a theoretical basis for it as an anti-browning agent in storage and preservation of lotus rhizome.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We describe an innovative protocol for ab initio prediction of ligand crystallographic binding poses and highly effective analysis of large datasets generated for protein-ligand dynamics. We include a procedure for setup and performance of distributed molecular dynamics simulations on cloud computing architectures, a model for efficient analysis of simulation data, and a metric for evaluation of model convergence. We give accurate binding pose predictions for five ligands ranging in affinity from 7 nM to > 200 μM for the immunophilin protein FKBP12, for expedited results in cases where experimental structures are difficult to produce. Our approach goes beyond single, low energy ligand poses to give quantitative kinetic information that can inform protein engineering and ligand design.
    Scientific Reports 01/2015; 5:7918. DOI:10.1038/srep07918 · 5.08 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Hypoxia inducible factor-1 alpha (HIF-1α) plays an important role in angiogenesis and metastasis and is a promising therapeutic target for the development of anti-cancer drugs. We recently developed a new synthetic small molecule inhibitor of HIF-1α, LW6, which results in inhibition of angiogenesis. To investigate its underlying mechanism, target protein identification was conducted by reverse chemical proteomics using phage display. We identified calcineurin b homologous protein 1 (CHP1) as a target protein of LW6, which specifically binds to CHP1 in a Ca2+ dependent manner. Covalent labeling of LW6 using photoaffinity and click chemistry demonstrated its co-localization with CHP1 in live cells. HIF-1α was decreased by CHP1 knockdown in HepG2 cells, and angiogenesis was not induced in HUVEC cells by treatment with conditioned media from CHP1 knockdown cells compared to the control. These data demonstrated that LW6 inhibited HIF-1α stability via direct binding with CHP1 resulting in suppression of angiogenesis, providing a new insight into the role of CHP1 in HIF-1α regulation. LW6 could serve as a new chemical probe to explore CHP1 function.
    Biochemical and Biophysical Research Communications 01/2015; 458(1). DOI:10.1016/j.bbrc.2015.01.031 · 2.28 Impact Factor


1 Download
Available from