Article

Seizure suppression by GDNF gene therapy in animal models of epilepsy.

Experimental Epilepsy Group, Wallenberg Neuroscience Center, Lund University Hospital, Lund, Sweden.
Molecular Therapy (Impact Factor: 6.43). 07/2007; 15(6):1106-13. DOI: 10.1038/sj.mt.6300148
Source: PubMed

ABSTRACT Temporal lobe epilepsy patients remain refractory to available anti-epileptic drugs in 30% of cases, indicating a need for novel therapeutic strategies. In this context, glial cell line-derived neurotrophic factor (GDNF) emerges as a possible new agent for epilepsy treatment. However, a limited number of studies, use of different epilepsy models, and different methods of GDNF delivery preclude understanding of the mechanisms for the seizure-suppressant action of GDNF. Here we show that recombinant adeno-associated viral (rAAV) vector-based GDNF overexpression in the rat hippocampus suppresses seizures in two models of temporal lobe epilepsy. First, when rAAV-GDNF was injected before hippocampal kindling, the number of generalized seizures decreased, and the prolongation of behavioral convulsions in fully kindled animals was prevented. Second, injection of rAAV-GDNF after kindling increased the seizure induction threshold. Third, rAAV-GDNF decreased the frequency of generalized seizures during the self-sustained phase of status epilepticus. Our data demonstrate the complexity of mechanisms and the beneficial action of GDNF in epilepsy. Furthermore, we show that ectopic rAAV-mediated GDNF gene expression in the seizure focus is a feasible way to mitigate seizures and provides proof of principle that the neurotrophic factor-based gene therapy approach has the potential to be developed as alternative strategy for epilepsy treatment.

0 Followers
 · 
67 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Since the last decade deep brain stimulation has been proposed as an alternative treatment for patients who do not be-come seizure-free with the current pharmacological treatments and cannot undergo resective surgical procedure. How-ever, the optimal stimulation parameters remain undetermined and active research in humans and animals is necessary. The present study was designed to investigate the effect of unilateral Low Frequency Stimulation (LFS) of hippocam-pus on seizure development by using the hippocampal rapid kindling method (hRK) in rats. We used male Wistar rats implanted with electrodes in the ventral hippocampus. All rats underwent hRK (biphasic square wave pulses, 20 Hz for 10 seconds) during three consecutive days (twelve stimulations per day). The control group (hRK; n = 6) received only RK stimulus, while the treated group (LFS-hRK; n = 8) received also LFS (biphasic square wave pulses, 1 Hz for 30 seconds) immediately before the RK stimulus, during three consecutive days. At the end of behavioral testing on day 3, 62% (P < 0.05) of the animals receiving LFS treatment were still not fully kindled staying in stages 0-III (P < 0.01). The number of stimulations needed to achieve generalized seizures (stage IV-V of Racine scale) was significantly higher (P < 0.05) in the LFS group with respect to control group. No significant differences in the cumulative daily afterdischarge duration were observed between both groups. These findings suggest that preemptive LFS can significantly decrease the incidence of hippocampus-kindled seizures and delay the progression and secondary generalization of focal seizures.
    Neuroscience & Medicine 01/2012; 3. DOI:10.4236/nm.2012.32022
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Since the last decade deep brain stimulation has been proposed as an alternative treatment for patients who do not be-come seizure-free with the current pharmacological treatments and cannot undergo resective surgical procedure. How-ever, the optimal stimulation parameters remain undetermined and active research in humans and animals is necessary. The present study was designed to investigate the effect of unilateral Low Frequency Stimulation (LFS) of hippocam-pus on seizure development by using the hippocampal rapid kindling method (hRK) in rats. We used male Wistar rats implanted with electrodes in the ventral hippocampus. All rats underwent hRK (biphasic square wave pulses, 20 Hz for 10 seconds) during three consecutive days (twelve stimulations per day). The control group (hRK; n = 6) received only RK stimulus, while the treated group (LFS-hRK; n = 8) received also LFS (biphasic square wave pulses, 1 Hz for 30 seconds) immediately before the RK stimulus, during three consecutive days. At the end of behavioral testing on day 3, 62% (P < 0.05) of the animals receiving LFS treatment were still not fully kindled staying in stages 0-III (P < 0.01). The number of stimulations needed to achieve generalized seizures (stage IV-V of Racine scale) was significantly higher (P < 0.05) in the LFS group with respect to control group. No significant differences in the cumulative daily afterdischarge duration were observed between both groups. These findings suggest that preemptive LFS can significantly decrease the incidence of hippocampus-kindled seizures and delay the progression and secondary generalization of focal seizures.
    Neuroscience & Medicine 01/2012; 3.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Cell transplantation has been suggested as an alternative therapy for temporal lobe epilepsy (TLE) because this can suppress spontaneous recurrent seizures in animal models. To evaluate the therapeutic potential of human neural stem/progenitor cells (huNSPCs) for treating TLE, we transplanted huNSPCs, derived from an aborted fetal telencephalon at 13 weeks of gestation and expanded in culture as neurospheres over a long time period, into the epileptic hippocampus of fully kindled and pilocarpine-treated adult rats exhibiting TLE. In vitro, huNSPCs not only produced all three central nervous system neural cell types, but also differentiated into ganglionic eminences-derived γ-aminobutyric acid (GABA)-ergic interneurons and released GABA in response to the depolarization induced by a high K+ medium. NSPC grafting reduced behavioral seizure duration, afterdischarge duration on electroencephalograms, and seizure stage in the kindling model, as well as the frequency and the duration of spontaneous recurrent motor seizures in pilocarpine-induced animals. However, NSPC grafting neither improved spatial learning or memory function in pilocarpine-treated animals. Following transplantation, grafted cells showed extensive migration around the injection site, robust engraftment, and long-term survival, along with differentiation into β-tubulin III+ neurons (∼34%), APC-CC1+ oligodendrocytes (∼28%), and GFAP+ astrocytes (∼8%). Furthermore, among donor-derived cells, ∼24% produced GABA. Additionally, to explain the effect of seizure suppression after NSPC grafting, we examined the anticonvulsant glial cell-derived neurotrophic factor (GDNF) levels in host hippocampal astrocytes and mossy fiber sprouting into the supragranular layer of the dentate gyrus in the epileptic brain. Grafted cells restored the expression of GDNF in host astrocytes but did not reverse the mossy fiber sprouting, eliminating the latter as potential mechanism. These results suggest that human fetal brain-derived NSPCs possess some therapeutic effect for TLE treatments although further studies to both increase the yield of NSPC grafts-derived functionally integrated GABAergic neurons and improve cognitive deficits are still needed.
    PLoS ONE 08/2014; 9(8):e104092. DOI:10.1371/journal.pone.0104092 · 3.53 Impact Factor

Full-text (2 Sources)

Download
21 Downloads
Available from
May 15, 2014