Article

Phage Therapy of Pseudomonas aeruginosa Infection in a Mouse Burn Wound Model

Department of Microbiology and Immunology, Texas Tech University Health Sciences Center, 3601 4th Street, Lubbock, TX 79430, USA.
Antimicrobial Agents and Chemotherapy (Impact Factor: 4.45). 07/2007; 51(6):1934-8. DOI: 10.1128/AAC.01028-06
Source: PubMed

ABSTRACT Mice compromised by a burn wound injury and subjected to a fatal infection with Pseudomonas aeruginosa were administered a single dose of a Pseudomonas aeruginosa phage cocktail consisting of three different P. aeruginosa phages by three different routes: the intramuscular (i.m.), subcutaneous (s.c.), or intraperitoneal (i.p.) route. The results of these studies indicated that a single dose of the P. aeruginosa phage cocktail could significantly decrease the mortality of thermally injured, P. aeruginosa-infected mice (from 6% survival without treatment to 22 to 87% survival with treatment) and that the route of administration was particularly important to the efficacy of the treatment, with the i.p. route providing the most significant (87%) protection. The pharmacokinetics of phage delivery to the blood, spleen, and liver suggested that the phages administered by the i.p. route were delivered at a higher dose, were delivered earlier, and were delivered for a more sustained period of time than the phages administered by the i.m. or s.c. route, which may explain the differences in the efficacies of these three different routes of administration.

3 Followers
 · 
111 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The evolution of antibiotic-resistant in bacteria has aggravated curiosity in development of alternative therapy to conventional drugs. One of the emerging drugs that can be used alternative to antibiotics is bacteriophage therapy. The use of living phages in the cure of lethal infectious life threatening diseases caused by Gram positive and Gram negative bacteria has been reported. Another development in the field of bacteriophage therapy is the use of genetically modified and non replicating phages in the treatment of bacterial infection. Genetically engineered bacteriophages can be used as adjuvant along with antibiotic therapy. Phages encoded with lysosomal enzymes are also effectual in the treatment of infectious diseases.
    Pakistan journal of pharmaceutical sciences 01/2015; 28(1):265-270. · 0.95 Impact Factor
  • Source
    Advances in Animal and Veterinary Sciences 01/2014; 2(3S):1-7. DOI:10.14737/journal.aavs/2014/2.3s.1.7
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Antibiotic resistance has become a major public health problem and the antibiotics pipeline is running dry. Bacteriophages (phages) may offer an 'innovative' means of infection treatment, which can be combined or alternated with antibiotic therapy and may enhance our abilities to treat bacterial infections successfully. Today, in the Queen Astrid Military Hospital, phage therapy is increasingly considered as part of a salvage therapy for patients in therapeutic dead end, particularly those with multidrug resistant infections. We describe the application of a well-defined and quality controlled phage cocktail, active against Pseudomonas aeruginosa and Staphylococcus aureus, on colonized burn wounds within a modest clinical trial (nine patients, 10 applications), which was approved by a leading Belgian Medical Ethical Committee. No adverse events, clinical abnormalities or changes in laboratory test results that could be related to the application of phages were observed. Unfortunately, this very prudent 'clinical trial' did not allow for an adequate evaluation of the efficacy of the phage cocktail. Nevertheless, this first 'baby step' revealed several pitfalls and lessons for future experimental phage therapy and helped overcome the psychological hurdles that existed to the use of viruses in the treatment of patients in our burn unit.

Preview

Download
1 Download
Available from