Article

Differential effect of resuscitation on Toll-like receptors in a model of hemorrhagic shock without a septic challenge.

Harvard University, Cambridge, Massachusetts, United States
Resuscitation (Impact Factor: 3.96). 10/2007; 74(3):526-37. DOI: 10.1016/j.resuscitation.2007.01.031
Source: PubMed

ABSTRACT It has been shown that the inflammatory response and cellular damage after hemorrhagic shock are influenced by resuscitation strategies. Toll-like receptors (TLRs) play an important role in signal transduction in inflammatory conditions. However, alterations in TLR expression following hemorrhagic shock and resuscitation have not been well documented. This study was conducted to measure the impact of different resuscitation strategies on TLR expression and downstream signaling in key organs.
Sprague Dawley rats (n=38) were subjected to a severe volume-controlled hemorrhage protocol. After 75 min of shock, they were resuscitated over 45 min as follows: (1) lactated Ringer's (LR, 81 ml/kg), (2) ketone Ringer's (KR, 81 ml/kg), (3) 7.5% hypertonic saline (HTS, 9.7 ml/kg), (4) 6% hetastarch (HEX, 27 ml/kg), (5) pyruvate Ringer's (PR, 81 ml/kg). Sham hemorrhage (NH) and no resuscitation (NR) groups served as controls. The KR and PR solutions were identical to LR except for equimolar substitution of racemic lactate with beta hydroxybutyrate and sodium pyruvate, respectively. At the end of resuscitation, the expression of TLRs (types 1-10), and cytokines (IL-10, IL-1beta and TNF-alpha) were measured in the lung and spleen using RT-PCR. Levels of phosphorylated and total IkB-alpha and NF-kappaB were detected by Western blotting. The systemic and lung protein levels of TNF-alpha were measured using ELISA and immunohistochemistry.
Expression of TLRs in the lung was affected more than in the spleen by hemorrhagic shock and resuscitation. In the lung, hemorrhage increased TLR-2, -3 and -6 (but not TLR-4) mRNA expression, with an up-regulation of the ratio of phosphor-NF-kappaBp65 and total NF-kappaBp65, NF-kappaBp65 activation, and enhanced systemic and tissue TNF-alpha protein levels. Post-resuscitation, TLR mRNA profile and subsequent downstream proteins in the lung and spleen were affected by the choice of resuscitation strategy.
Hemorrhagic shock activates TLR signaling in lung, but not the spleen, probably through an up-regulation of TLR gene expression, and activation of NF-kappaB pathway. Resuscitation modulates this response in a fluid- and tissue-specific fashion.

0 Followers
 · 
53 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: Zusammenfassung In den nächsten Jahren wird sich unser Herangehen an den blutenden Patienten radikal verändern müssen. Die zwangsläufig aus dem Irak- und Afghanistan-Krieg gewonnenen Erkenntnisse lassen die Voraussage zu, dass konventionelle Kristalloide früher oder später als Volumenersatz verschwinden werden. Das Dogma, dass Flüssigkeiten per se gegeben werden, wird fallen und durch die Erkenntnis ersetzt werden, das man Volumen nur dann ersetzten muss, wenn es auch signifikant verloren gegangen ist.
    Der Unfallchirurg 07/2009; 112(7):670-673. DOI:10.1007/s00113-008-1562-1 · 0.61 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: BACKGROUND: Severe injury and associated hemorrhagic shock lead to an inflammatory response and subsequent increased tissue damage. Numerous reports have shown that injury-induced inflammation and the associated end-organ damage is driven by Toll-like receptor 4 (TLR4) activation via damage-associated molecular patterns. We examined the effectiveness of Eritoran tetrasodium (E5564), an inhibitor of TLR4 function, in reducing inflammation induced during hemorrhagic shock with resuscitation (HS/R) or after peripheral tissue injury (bilateral femur fracture, BFF). MATERIAL AND METHODS: Mice underwent HS/R or BFF with or without injection of Eritoran (5 mg/kg body weight) or vehicle control given before, both before and after, or only after HS/R or BFF. Mice were sacrificed after 6 h and plasma and tissue cytokines, liver damage (histology; aspartate aminotransferase/alanine aminotransferase), and inflammation (NF-κB) and gut permeability were assessed. RESULTS: In HS/R Eritoran significantly reduced liver damage (values ± SEM: alanine aminotransferase 9910 ± 3680 U/L versus 1239 ± 327 U/L and aspartate aminotransferase 5863 ± 2000 U/L versus 1246 ± 243 U/L, P < 0.01) at 6 h compared with control when given just before HS and again just prior to resuscitation. Eritoran administration also led to lower IL-6 levels in plasma and liver and less NF-κB activation in liver. Increases in gut barrier permeability induced by HS/R were also prevented with Eritoran. Eritoran similarly diminished BFF-mediated systemic inflammatory responses. CONCLUSION: These data suggest Eritoran can inhibit tissue damage and inflammation induced via TLR4/myeloid differentiation factor 2 signaling from damage-associated molecular patterns released during HS/R or BFF. Eritoran may represent a promising therapeutic for trauma patients to prevent multiple organ failure.
    Journal of Surgical Research 03/2013; 184(2). DOI:10.1016/j.jss.2013.03.023 · 2.12 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: Valproic acid (VPA) has been shown to improve survival in animal models of hemorrhagic shock at a dose of 300 mg/kg. Our aim was to identify the ideal dose through dose-escalation, split-dosing, and dose de-escalation regimens. Rats were subjected to sublethal 40% hemorrhage and treated with vehicle or VPA (dose of 300, 400, or 450 mg/kg) after 30 min of shock. Acetylated histones and activated proteins from the PI3K-Akt-GSK-3β survival pathway at different time points were quantified by Western blot analysis. In a similar model, a VPA dose of 200 mg/kg followed 2 h later by another dose of 100 mg/kg was administered. Finally, animals were subjected to a lethal 50% hemorrhage and VPA was administered in a dose de-escalation manner (starting at dose of 300 mg/kg) until a significant drop in percent survival was observed. Larger doses of VPA resulted in greater acetylation of histone 3 and increased activation of PI3K pathway proteins. Dose-dependent differences were significant in histone acetylation but not in the activation of the survival pathway proteins. Split-dose administration of VPA resulted in similar results to a single full dose. Survival was as follows: 87.5% with 300 and 250 mg/kg of VPA, 50% with 200 mg/kg of VPA, and 14% with vehicle-treated animals. Although higher doses of VPA result in greater histone acetylation and activation of prosurvival protein signaling, doses as low as 250 mg/kg of VPA confer the same survival advantage in lethal hemorrhagic shock. Also, VPA can be given in a split-dose fashion without a reduction in its cytoprotective effectiveness.
    Journal of Surgical Research 10/2013; DOI:10.1016/j.jss.2013.09.016 · 2.12 Impact Factor