NK cell activation in visceral leishmaniasis requires TLR9, myeloid DCs, and IL-12, but is independent of plasmacytoid DCs

Institute of Medical Microbiology and Hygiene, University of Freiburg, D-79104 Freiburg, Germany.
Journal of Experimental Medicine (Impact Factor: 13.91). 05/2007; 204(4):893-906. DOI: 10.1084/jem.20061293
Source: PubMed

ABSTRACT Natural killer (NK) cells are sentinel components of the innate response to pathogens, but the cell types, pathogen recognition receptors, and cytokines required for their activation in vivo are poorly defined. Here, we investigated the role of plasmacytoid dendritic cells (pDCs), myeloid DCs (mDCs), Toll-like receptors (TLRs), and of NK cell stimulatory cytokines for the induction of an NK cell response to the protozoan parasite Leishmania infantum. In vitro, pDCs did not endocytose Leishmania promastigotes but nevertheless released interferon (IFN)-alpha/beta and interleukin (IL)-12 in a TLR9-dependent manner. mDCs rapidly internalized Leishmania and, in the presence of TLR9, produced IL-12, but not IFN-alpha/beta. Depletion of pDCs did not impair the activation of NK cells in L. infantum-infected mice. In contrast, L. infantum-induced NK cell cytotoxicity and IFN-gamma production were abolished in mDC-depleted mice. The same phenotype was observed in TLR9(-/-) mice, which lacked IL-12 expression by mDCs, and in IL-12(-/-) mice, whereas IFN-alpha/beta receptor(-/-) mice showed only a minor reduction of NK cell IFN-gamma expression. This study provides the first direct evidence that mDCs are essential for eliciting NK cell cytotoxicity and IFN-gamma release in vivo and demonstrates that TLR9, mDCs, and IL-12 are functionally linked to the activation of NK cells in visceral leishmaniasis.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: We have previously reported a link between a deficient Th1 response to Leishmania amazonensis (La) parasites and profound impairments in the cytokine/chemokine network at early stages of the infection. To define the molecular basis of these deficiencies, we focused on early and intracellular events in La-infected dendritic cells (DCs) in this study. La amastigote-infected DCs were less mature and less potent antigen-presenting cells (APC) than their promastigote-infected counterparts, as judged by the lower expression of CD40 and CD83, suppressed cytokine expression (IL-12p40 and IL-10), reduced effectiveness for priming CD4+ T cells from naïve or infected mice. Infection with La promastigotes, but not amastigotes, triggered transient expression of IL-12p40 by DC. Both forms of parasites markedly suppressed IL-12p40, IL-12p70, and IL-6 production and increased IL-10 production when DCs were treated with LPS, IFN-gamma/LPS or IFN-alpha/LPS as positive stimuli. Of note, pre-infection of DCs with live amastigotes resulted in multiple alterations in innate signaling pathways, including degradation of STAT2, decreased phosphorylation of STAT1, 2, 3 and ERK1/2, and markedly reduced expression of interferon regulatory factor-1 (IRF-1) and IRF-8, some of which were partially reversed by pretreatment of parasites with proteasome or protease inhibitors. The impaired IL-12 production in infected DCs was not attributed to increased IL-10 production. Together, our data suggest that La parasites, especially in their intracellular forms, have evolved unique strategies to actively down-regulate early innate signaling events, resulting in impaired DC function and Th1 activation.
    Molecular Immunology 08/2008; 45(12):3371-82. DOI:10.1016/j.molimm.2008.04.018 · 3.00 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: The physiologic role played by plasmacytoid dendritic cells (pDCs) in the induction of innate responses and inflammation in response to pathogen signaling is not well understood. Here, we describe a new mouse model lacking pDCs and establish that pDCs are essential for the in vivo induction of NK-cell activity in response to Toll-like receptor 9 (TLR9) triggering. Furthermore, we provide the first evidence that pDCs are critical for the systemic production of a wide variety of chemokines in response to TLR9 activation. Consequently, we observed a profound alteration in monocyte, macrophage, neutrophil, and NK-cell recruitment at the site of inflammation in the absence of pDCs in response to CpG-Dotap and stimulation by microbial pathogens, such as Leishmania major, Escherichia coli, and Mycobacterium bovis. This study, which is based on the development of a constitutively pDC-deficient mouse model, highlights the pivotal role played by pDCs in the induction of innate immune responses and inflammation after TLR9 triggering.
    Blood 05/2012; 120(1):90-9. DOI:10.1182/blood-2012-02-410936 · 9.78 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Macrophages are immune system cells that recognize pathogen associated molecular patterns (PAMPs) through receptors that can be located on the cell membrane or in intracellular compartments, such as the TLR (toll like receptors). Different TLRs bind to ligands shared among multiple pathogens. The binding of ligands to TLRs induces a signaling cascade that leads to cytokine and co-stimulatory molecule production due to the nuclear translocation of NF-kappaB. We demonstrated that Leishmania lipophosphoglycan (LPG) is a ligand for TLR2, leading to NK-cell activation. Schieicher et al. recently reported that genomic DNA from Leishmania infantum activates plasmacitoid dendritic cells through TLR9, leading to IFN type I production. In the present study we explored wether Leishmania mexicana DNA contained non-methylated CpG motifs able to activate murine bone marrow derived macrophages, as previously described for bacterial DNA containing CpG motifs. We observed that Leishmania mexicana DNA contains non-methylated CpG morifs able ofactivating murine bone marrow derived macrophages, leading to the production of proinflammatory cytokines such as TNFalpha and IL- 12(P40) as well as the over expression of mRNA for TLR9.
    Gaceta medica de Mexico 01/2008; 144(2):99-104. · 0.19 Impact Factor