Article

Nuclear DNA does not reconcile 'rocks' and 'clocks' in Neoaves: a comment on Ericson et al.

Department of Ecology and Evolutionary Biology, University of Michigan, Museum of Zoology (Bird Division), 1109 Geddes Avenue, Ann Arbor, MI 48109-1079, USA.
Biology letters (Impact Factor: 3.43). 07/2007; 3(3):257-9; discussion 260-1. DOI: 10.1098/rsbl.2006.0611
Source: PubMed
1 Bookmark
 · 
64 Views
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The major histocompatibility complex (MHC) plays an important role in immune response. Avian MHCs are not well characterized, only reporting highly compact Galliformes MHCs and extensively fragmented zebra finch MHC. We report the first genomic structure of an endangered Pelecaniformes (crested ibis) MHC containing 54 genes in three regions spanning ~500 kb. In contrast to the loose BG (26 loci within 265 kb) and Class I (11 within 150) genomic structures, the Core Region is condensed (17 within 85). Furthermore, this Region exhibits a COL11A2 gene, followed by four tandem MHC class II αβ dyads retaining two suites of anciently duplicated "αβ" lineages. Thus, the crested ibis MHC structure is entirely different from the known avian MHC architectures but similar to that of mammalian MHCs, suggesting that the fundamental structure of ancestral avian class II MHCs should be "COL11A2-IIαβ1-IIαβ2." The gene structures, residue characteristics, and expression levels of the five class I genes reveal inter-locus functional divergence. However, phylogenetic analysis indicates that these five genes generate a well-supported intra-species clade, showing evidence for recent duplications. Our analyses suggest dramatic structural variation among avian MHC lineages, help elucidate avian MHC evolution, and provide a foundation for future conservation studies.
    Scientific reports. 01/2015; 5:7963.
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Central to our understanding of the timing of bird evolution is debate about an apparent conflict between fossil and molecular data. A deep age for higher level taxa within Neoaves is evident from molecular analyses but much remains to be learned about the age of diversification in modern bird families and their evolutionary ecology. In order to better understand the timing and pattern of diversification within the family Rallidae we used a relaxed molecular clock, fossil calibrations, and complete mitochondrial genomes from a range of rallid species analysed in a Bayesian framework. The estimated time of origin of Rallidae is Eocene, about 40.5 Mya, with evidence of intrafamiliar diversification from the Late Eocene to the Miocene. This timing is older than previously suggested for crown group Rallidae, but fossil calibrations, extent of taxon sampling and substantial sequence data give it credence. We note that fossils of Eocene age tentatively assigned to Rallidae are consistent with our findings. Compared to available studies of other bird lineages, the rail clade is old and supports an inference of deep ancestry of ground-dwelling habits among Neoaves.
    PLoS ONE 01/2014; 9(10):e109635. · 3.53 Impact Factor

Full-text (2 Sources)

Download
8 Downloads
Available from
Oct 6, 2014