TAFIa, PAI-1 and alpha-antiplasmin: complementary roles in regulating lysis of thrombi and plasma clots.

Institute of Medical Sciences, University of Aberdeen, Aberdeen, UK.
Journal of Thrombosis and Haemostasis (Impact Factor: 5.55). 05/2007; 5(4):812-7. DOI: 10.1111/j.1538-7836.2007.02430.x
Source: PubMed

ABSTRACT PAI-1 and alpha(2)-antiplasmin (alpha(2)AP) are the principal direct inhibitors of fibrinolytic proteases. Thrombin activatable fibrinolysis inhibitor (TAFI), a plasma procarboxypeptidase activated by thrombin-thrombomodulin to form TAFIa, also regulates fibrinolysis by modulating fibrin. In this study, the relative contributions of PAI-1, alpha(2)AP and TAFIa to inhibition of lysis were assessed. In platelet-poor plasma clots, alpha(2)AP, TAFIa and PAI-1 all inhibited lysis, as shown by the addition of neutralizing antibodies to alpha(2)AP and PAI-1 +/- CPI, a potato carboxypeptidase inhibitor. alpha(2)AP played the largest role in regulating plasma clot lysis, but neutralization of inhibitors in combinations was more effective in shortening lysis times, with a maximal effect when all three inhibitors were neutralized. In platelet-rich clots, a larger contribution of PAI-1 was evident. Tissue plasminogen activator induced lysis of model thrombi, made from whole blood, was approximately doubled on incorporation of CPI, illustrating a substantial contribution of TAFIa to inhibition of thrombus lysis. Similar increases in thrombus lysis were observed on inclusion of neutralizing antibodies to PAI-1 and alpha(2)AP, with alpha(2)AP playing the dominant role. Maximal thrombus lysis occurred upon neutralization of all three inhibitors. These observations suggest that, despite the differences in concentrations and activities of inhibitors, and the different modes of action, the roles of the three are complementary in both plasma clot lysis and thrombus lysis.

Download full-text


Available from: Nicola J Mutch, Nov 01, 2014
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Recombinant tissue-type plasminogen activator (rtPA) is the only globally approved treatment for acute ischaemic stroke. Other potential treatments might be administered with rtPA, making it important to discover whether compounds interfere with rtPA-induced lysis. We evaluated methods for examining the effect of the neuroprotectant NXY-059 on the lytic property of rtPA. Plasma clot formation and lysis in the presence of rtPA and NXY-059 was measured as the change in plasma turbidity. The effect of NXY-059 on rtPA-induced lysis was similarly assessed on preformed clots. Lysis of the thrombus formed in a Chandler loop measured release of fluorescent-tagged fibrinogen that had been incorporated during thrombus formation. Thrombi were exposed to both rtPA and NXY-059 throughout lysis in the presence of 80% autologous plasma and the release of label during lysis was measured. Data interpretation is limited in the clot lysis experiments because either the rtPA was present during clot formation or the drug was added to a clot formed in static conditions. In contrast, thrombi were formed in dynamic flow conditions in the Chandler loop and the time course of lysis in plasma was examined. rtPA increased thrombolysis and the antifibrinolytic trans-4-(aminomethyl) cyclohexane carboxylic acid (AMCA) inhibited lysis. Lysis induced by rtPA was unaltered by NXY-059. The Chandler loop method provides a reliable technique for examining the effect of compounds on rtPA-induced lysis in vitro and demonstrated that NXY-059 does not alter rtPA-induced lysis at clinically relevant concentrations of either drug.
    British Journal of Pharmacology 02/2008; 153(1):124-31. DOI:10.1038/sj.bjp.0707543 · 4.99 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: In patients with pulmonary embolism, thrombi resist fibrinolysis induced by plasminogen activators. Because the molecular basis of this thrombus resistance is poorly understood, we used a potent inhibitor to examine the potential role of alpha 2-antiplasmin (alpha 2AP) in experimental pulmonary embolism. Lysis of experimental pulmonary emboli was measured 4 hours after embolization in anesthetized ferrets. All animals received heparin (100 U/kg). Five experimental groups were studied: (1) no recombinant tissue plasminogen activator (rTPA); (2) rTPA at 1 mg/kg; (3) rTPA at 2 mg/kg; (4) rTPA at 1 mg/kg plus a control monoclonal antibody (MAb); and (5) rTPA at 1 mg/kg plus an alpha 2AP inhibitor (MAb 77A3). In comparison with ferrets receiving no rTPA (15.6 +/- 10.5% lysis, mean +/- SD), rTPA-treated groups showed significantly greater lysis (P < .01). Animals treated with rTPA and alpha 2AP inhibitor (56.2 +/- 4.7% lysis) showed significantly greater lysis than all other treatment groups, including ferrets treated with the same dose of rTPA alone (38.5 +/- 6.3%, P < .01), with twice the rTPA dose alone (45.0 +/- 6.5%, P < .05), or with a control MAb (35.2 +/- 4.6%, P < .01). The combination of rTPA treatment and alpha 2AP inhibition caused no consumption of fibrinogen. Inhibition of alpha 2AP significantly amplified the lysis of experimental pulmonary emboli by rTPA without increasing fibrinogen consumption. These results suggest that alpha 2AP may play an important role in thrombus resistance in patients with venous thromboembolism.
    Circulation 05/1997; 95(7):1886-91. DOI:10.1161/01.CIR.95.7.1886 · 14.95 Impact Factor
  • Source