Article

A subpopulation of human peripheral blood NK cells that lacks inhibitory receptors for self-MHC is developmentally immature.

Division of Hematology, Oncology and Transplantation, University of Minnesota Cancer Center, Minneapolis 55455, USA.
Blood (Impact Factor: 9.78). 08/2007; 110(2):578-86. DOI: 10.1182/blood-2006-07-036228
Source: PubMed

ABSTRACT How receptor acquisition correlates with the functional maturation of natural killer (NK) cells is poorly understood. We used quantitative real-time polymerase chain reaction (PCR) assays to compare NKG2 and killer immunoglobulin-like receptor (KIR) gene expression in NK cells from allogeneic transplant recipients and their donors. Marked differences were observed in the NK subsets of recipients who had 8-fold more CD56(bright) cells, diminished KIR expression (except 2DL4), and increased NKG2A. In normal blood not all CD56(dim) cells express KIR, and a novel subpopulation of cells committed to the NK-cell lineage was defined. These cells, which comprise 19.4% +/- 2.8% of the CD56(dim) NK population in healthy donors, express the activating NKG2D and NKG2E receptors but no KIR or NKG2A. Although the CD56(dim) NKG2A(-) KIR(-) NK cells lack "at least one" inhibitory receptor for autologous MHC class I, they are not fully responsive, but rather functionally immature cells with poor cytotoxicity and IFN-gamma production. Upon culture with IL-15 and a stromal cell line, CD56(dim) and CD56(bright) KIR(-) NK cells proliferate, express KIR, and develop cytotoxicity and cytokine-producing potential. These findings have implications for the function of NK cells reconstituting after transplantation and support a model for in vivo development in which CD56(bright) cells precede CD56(dim) cells.

0 Bookmarks
 · 
54 Views
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Natural killer (NK) cells potentially play a significant role in eradicating residual disease following allogeneic haematopoietic cell transplantation, and have been explored as tools for adoptive immunotherapy for chemotherapy-refractory patients. NK cell cytotoxicity is modulated by multiple activating and inhibitory receptors that maintain a balance between self-tolerance and providing surveillance against pathogens and malignant transformation. The functional characteristics of NK cells are dictated by the strength of inhibitory receptor signalling. Major histocompatibility complex (MHC)-specific inhibitory receptor acquisition occurs sequentially during NK cell development, and is determined by the nature of immunological reconstitution after allogeneic haematopoietic cell transplantation. Polymorphisms of inhibitory receptors [killer immunoglobulin-like receptors (KIRs)] and their ligands (MHC) contribute to interindividual variability. As a result, the functional NK cell repertoire of individual donors has variable potential for graft-vs-leukaemia reactions. Models predicting NK cell alloreactivity, including KIR ligand mismatch and missing KIR ligand strategies, are discussed as algorithms for optimal NK cell donor selection. Future modifications to improve NK cell adoptive immunotherapy by means of increasing target recognition and reducing inhibitory signalling are being explored.
    Bailli&egrave re s Best Practice and Research in Clinical Haematology 10/2008; 21(3):467-83. · 2.81 Impact Factor
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Increased evidence of cross-talk between NK cells and other immune cells has enhanced the possibilities of exploiting the interplay between the activation and inhibition of NK cells for immunotherapeutic purposes. The battery of receptors possessed by NK cells help them to efficiently detect aberrant and infected cells and embark on the signaling pathways necessary to eliminate them. Endogenous expansion of NK cells and their effector mechanisms are under exploration for enhancing adoptive immunotherapy prospects in combination with immunostimulatory and cell-death-sensitizing treatments against cancer, viral infections and other pathophysiological autoimmune conditions. Various modes of NK cell manipulation are being undertaken to overcome issues such as relapse and graft rejections associated with adoptive immunotherapy. While tracing the remarkable properties of NK cells and the major developments in this field, we highlight the role of immune cooperativity in the betterment of current immunotherapeutic approaches.
    Immunotherapy 10/2011; 3(10):1143-66. · 2.39 Impact Factor
  • [Show abstract] [Hide abstract]
    ABSTRACT: NK cells are regulated by inhibiting and activating cell surface receptors. Most inhibitory receptors recognize MHC class I Ags and protect healthy cells from NK cell-mediated autoaggression. However, certain activating receptors, including the human activating killer cell Ig-like receptor (KIR) 2DS1, also recognize MHC class I. This fact raises the question of how NK cells expressing such activating receptors are tolerized to host tissues. We investigated whether the presence of HLA-C2, the cognate ligand for 2DS1, induces tolerance in 2DS1-expressing NK cells. Anti-HLA-C2 activity could be detected in vitro in some 2DS1 positive NK clones irrespective of the presence or absence of HLA-C2 ligand in the donor. The frequency of anti-HLA-C2 reactivity was high in donors homozygous for HLA-C1. Surprisingly, no significant difference was seen in the frequency of anti-HLA-C2 cytotoxicity in donors heterozygous for HLA-C2 and donors without HLA-C2 ligand. However, donors homozygous for HLA-C2, compared with all other donors, had significantly reduced frequency of anti-HLA-C2 reactive clones. The 2DS1 positive clones that express inhibitory KIR for self-HLA class I were commonly noncytotoxic, and anti-HLA-C2 cytotoxicity was nearly exclusively restricted to 2DS1 single positive clones lacking inhibitory KIR. 2DS1 single positive NK clones with anti-HLA-C2 reactivity were also present posttransplantation in HLA-C2 positive recipients of hematopoietic stem cell transplants from 2DS1 positive donors. These results demonstrate that many NK cells with anti-HLA-C2 reactivity are present in HLA-C1 homozygous and heterozygous donors with 2DS1. In contrast, 2DS1 positive clones from HLA-C2 homozygous donors are frequently tolerant to HLA-C2.
    The Journal of Immunology 04/2013; · 5.52 Impact Factor

Full-text (2 Sources)

View
9 Downloads
Available from
Jun 1, 2014