Article

Genome-wide expression profiling in Geobacter sulfurreducens: identification of Fur and RpoS transcription regulatory sites in a relGsu mutant.

Department of Preventive Medicine, University of Tennessee Health Science Center, 66 N. Pauline, Memphis, TN 38163, USA.
Functional and Integrative Genomics (Impact Factor: 2.69). 08/2007; 7(3):229-55. DOI: 10.1007/s10142-007-0048-5
Source: PubMed

ABSTRACT Rel(Gsu) is the single Geobacter sulfurreducens homolog of RelA and SpoT proteins found in many organisms. These proteins are involved in the regulation of levels of guanosine 3', 5' bispyrophosphate, ppGpp, a molecule that signals slow growth and stress response under nutrient limitation in bacteria. We used information obtained from genome-wide expression profiling of the rel(Gsu) deletion mutant to identify putative regulatory sites involved in transcription networks modulated by Rel(Gsu) or ppGpp. Differential gene expression in the rel(Gsu) deletion mutant, as compared to the wild type, was available from two growth conditions, steady state chemostat cultures and stationary phase batch cultures. Hierarchical clustering analysis of these two datasets identified several groups of operons that are likely co-regulated. Using a search for conserved motifs in the upstream regions of these co-regulated operons, we identified sequences similar to Fur- and RpoS-regulated sites. These findings suggest that Fur- and RpoS-dependent gene expression in G. sulfurreducens is affected by Rel(Gsu)-mediated signaling.

0 Followers
 · 
83 Views
  • [Show abstract] [Hide abstract]
    ABSTRACT: The protein family of LysR-type transcriptional regulators (LTTRs) is highly abundant among prokaryotes. We analyzed 10,145 non-redundant microbial sequences with homology to eight LysR family regulators of a model prokaryote, Geobacter sulfurreducens, and employed phylogenetic tree inference for LTTR classification. We also analyzed the arrangement of genome clusters containing G. sulfurreducens LTTR genes and searched for LTTR regulatory motifs, suggesting likely regulatory targets of G. sulfurreducens LTTRs. This is the first study to date providing a detailed classification of LTTRs in the deltaproteobacterial family Geobacteraceae.
    Journal of Molecular Evolution 04/2012; 74(3-4):187-205. DOI:10.1007/s00239-012-9498-z · 1.86 Impact Factor
  • Source
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: When Geobacter sulfurreducens utilizes an electrode as its electron acceptor, cells embed themselves in a conductive biofilm tens of microns thick. While environmental conditions such as pH or redox potential have been shown to change close to the electrode, less is known about the response of G. sulfurreducens to growth in this biofilm environment. To investigate whether respiratory protein abundance varies with distance from the electrode, antibodies against an outer membrane multiheme cytochrome (OmcB) and cytoplasmic acetate kinase (AckA) were used to determine protein localization in slices spanning ∼25 µm-thick G. sulfurreducens biofilms growing on polished electrodes poised at +0.24 V (vs. Standard Hydrogen Electrode). Slices were immunogold labeled post-fixing, imaged via transmission electron microscopy, and digitally reassembled to create continuous images allowing subcellular location and abundance per cell to be quantified across an entire biofilm. OmcB was predominantly localized on cell membranes, and 3.6-fold more OmcB was detected on cells 10-20 µm distant from the electrode surface compared to inner layers (0-10 µm). In contrast, acetate kinase remained constant throughout the biofilm, and was always associated with the cell interior. This method for detecting proteins in intact conductive biofilms supports a model where the utilization of redox proteins changes with depth.
    PLoS ONE 08/2014; 9(8):e104336. DOI:10.1371/journal.pone.0104336 · 3.53 Impact Factor