Dissociated theta phase synchronization in amygdalo- hippocampal circuits during various stages of fear memory

Institut für Physiologie I, Westfälische Wilhelms-Universität Münster, Robert-Koch-Str 27a, Münster, Germany.
European Journal of Neuroscience (Impact Factor: 3.67). 04/2007; 25(6):1823-31. DOI: 10.1111/j.1460-9568.2007.05437.x
Source: PubMed

ABSTRACT The amygdala and the hippocampus are critically involved in the formation and retention of fear memories. However, their precise contribution to, and their interplay during, fear memory formation are not fully understood. In the present study we investigated network activities in the amygdalo-hippocampal system of freely behaving mice at different stages of fear memory consolidation and retention. Our data show enhanced theta phase synchronization in this pathway during the retrieval of fear memory at long-term (24 h post-training), but not short-term (2 min, 30 min and 2 h post-training) stages, following both contextual and auditory cued conditioning. However, retrieval of remotely conditioned fear (30 days post-training) failed to induce an increase in synchronization despite there still being memory retention. Thus, our data indicate that the amygdalo-hippocampal interaction reflects a dynamic interaction of ensemble activities related to various stages of fear memory consolidation and/or retention, and support the notion that recent and remote memories are organized through different network principles.

  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: It is well established that physical changes to an environment result in plasticity of hippocampal place cell activity, while in the absence of changes, place fields are remarkably stable. Manipulations of a rat's perception of the environment without physically changing the environment also result in plasticity of place cell firing. Here, we tested the hypothesis that a rat's perception of an environment could be changed by introducing an auditory fear-conditioned stimulus (CS) to a previously neutral environment, inducing plasticity of hippocampal place fields. First, stable place fields were isolated for rats exploring a radial-arm maze in one environment, and then the rats were fear-conditioned to an auditory CS in a completely separate environment. Later, the CS was specifically paired once with a location in the previously neutral radial-arm maze, either within the given neuron's place field (in-field) or an area outside of the place field (out-of-field). A single, paired presentation of the CS with a location in-field for a specific place cell disrupted the stability of that neuron's place field, whereas pairing the CS with a location out-of-field did not affect place field stability. We further showed that this place field disruption for a CS presented in-field was mediated by inputs from the basolateral amygdala (BLA). Temporarily inactivating the BLA immediately post-CS re-exposure attenuated the CS-induced place field destabilization. Our results show neuron-specific conditional plasticity for actively firing hippocampal place cells, and that the BLA mediates this plasticity when an emotionally arousing or fear-related CS is used.
    Brain Research 08/2013; 1525:16-25. DOI:10.1016/j.brainres.2013.06.015
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: The relationship between epilepsy and fear has received much attention. However, seizure-modulated fear and physiologic or structural correlates have not been examined systematically, and the underlying basics of network levels remain unclear to date. Therefore, this project was set up to characterize the neurophysiologic basis of seizure-related fear and the contribution of the amygdala-hippocampus system. The experimental strategy was composed of the following steps: (1) use of the mouse pilocarpine model of temporal lobe epilepsy (TLE); (2) behavioral analyses of anxiety states in the elevated plus maze test, light-dark avoidance test, and Pavlovian fear conditioning; and (3) probing neurophysiologic activity patterns in amygdala-hippocampal circuits in freely behaving mice. Our results displayed no significant differences in basic anxiety levels comparing mice that developed spontaneous recurrent seizures (SRS) and controls. Furthermore, conditioned fear memory retrieval was not influenced in SRS mice. However, during fear memory extinction, SRS mice showed an extended freezing behavior and a maintained amygdala-hippocampal theta frequency synchronization compared to controls. These results indicate specific alterations in conditioned fear behavior and related neurophysiologic activities in the amygdala-hippocampal network contributing to impaired fear memory extinction in mice with TLE. Clinically, the nonextinguished fear memories may well contribute to the experience of fear in patients with TLE.
    Epilepsia 11/2010; 52(2):337-46. DOI:10.1111/j.1528-1167.2010.02758.x
  • Source
    [Show abstract] [Hide abstract]
    ABSTRACT: Interneurons expressing the calcium-binding protein parvalbumin (PV) are a critical component of the inhibitory circuitry of the basolateral nuclear complex (BLC) of the mammalian amygdala. These neurons form interneuronal networks interconnected by chemical and electrical synapses, and provide a strong perisomatic inhibition of local pyramidal projection neurons. Immunohistochemical studies in rodents have shown that most parvalbumin-positive (PV+) cells are GABAergic interneurons that co-express the calcium-binding protein calbindin (CB), but exhibit no overlap with interneuronal subpopulations containing the calcium-binding protein calretinin (CR) or neuropeptides. Despite the importance of identifying interneuronal subpopulations for clarifying the major players in the inhibitory circuitry of the BLC, very little is known about these subpopulations in primates. Therefore, in the present investigation dual-labeling immunofluorescence histochemical techniques were used to characterize PV+ interneurons in the basal and lateral nuclei of the monkey amygdala. These studies revealed that 90-94% of PV+ neurons were GABA+, depending on the nucleus, and that these neurons constituted 29-38% of the total GABAergic population. CB+ and CR+ interneurons constituted 31-46% and 23-27%, respectively, of GABAergic neurons. Approximately one quarter of PV+ neurons contained CB, and these cells constituted one third of the CB+ interneuronal population. There was no colocalization of PV with the neuropeptides somatostatin or cholecystokinin, and virtually no colocalization with CR. These data indicate that the neurochemical characteristics of the PV+ interneuronal subpopulation in the monkey BLC are fairly similar to those seen in the rat, but there is far less colocalization of PV and CB in the monkey. These findings suggest that PV+ neurons are a discrete interneuronal subpopulation in the monkey BLC and undoubtedly play a unique functional role in the inhibitory circuitry of this brain region.
    Neuroscience 12/2008; 158(4):1541-50. DOI:10.1016/j.neuroscience.2008.11.017